
Delphi Edition
ActiveX Edition

DLL Edition

Version 11.13

Reference Guide

Copyright © 2002-2014 Debenu Pty Ltd

AddArcToPath
Vector graphics, Path definition and drawing, Form fields, Annotations and hotspot
links

Description

Adds an arc to the current path.
The arc is drawn around a center point for a specified number of degrees either clockwise or
anti-clockwise.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddArcToPath(CenterX, CenterY,
 TotalAngle: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddArcToPath(CenterX As Double,
 CenterY As Double, TotalAngle As Double) As Long

 DLL

int DPLAddArcToPath(int InstanceID, double CenterX, double CenterY,
 double TotalAngle);

Parameters

CenterX The horizontal co-ordinate of the center of the arc

CenterY The vertical co-ordinate of the center of the arc

TotalAngle The angular length of the arc. If this value is positive the arc will be drawn in a
clockwise direction. A negative value will result in an arc drawn in an
anti-clockwise direction. This value must be greater or less than 0. A value of 360
will result in a full circle being drawn.

AddBoxToPath
Vector graphics, Path definition and drawing

Version history

This function was introduced in Quick PDF Library version 9.14.

Description

Adds a rectangle to the current path.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddBoxToPath(Left, Top, Width,
 Height: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddBoxToPath(Left As Double,
 Top As Double, Width As Double, Height As Double) As Long

 DLL

int DPLAddBoxToPath(int InstanceID, double Left, double Top, double Width,
 double Height);

Parameters

Left The horizontal co-ordinate of the left edge of the box

Top The vertical co-ordinate of the top edge of the box

Width The width of the box

Height The height of the box

AddCJKFont
Text, Fonts

Version history

This function was introduced in Quick PDF Library version 7.11.

Description

Adds a CJK (Chinese Japanese Korean) font to the PDF document.
At present, the only supported CJK fonts are the Japanese "HeiseiKakuGo-W5" font and the Korean
"HYGoThic-Medium" font.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddCJKFont(CJKFontID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddCJKFont(
 CJKFontID As Long) As Long

 DLL

int DPLAddCJKFont(int InstanceID, int CJKFontID);

Parameters

CJKFontID 1 = HeiseiKakuGo-W5
2 = HeiseiKakuGo-W5 (Bold)
3 = HeiseiKakuGo-W5 (Bold Italic)
4 = HeiseiKakuGo-W5 (Italic)
5 = HYGoThic-Medium
6 = HYGoThic-Medium (Bold)
7 = HYGoThic-Medium (Bold Italic)
8 = HYGoThic-Medium (Italic)

AddCurveToPath
Vector graphics, Path definition and drawing

Description

Adds a bezier curve to the current path.
The curve is drawn from the last point to the point defined by (EndX, EndY).
(CtAX, CtAY) and (CtBX, CtBY) define the two bezier control points.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddCurveToPath(CtAX, CtAY, CtBX, CtBY,
 EndX, EndY: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddCurveToPath(CtAX As Double,
 CtAY As Double, CtBX As Double, CtBY As Double,
 EndX As Double, EndY As Double) As Long

 DLL

int DPLAddCurveToPath(int InstanceID, double CtAX, double CtAY,
 double CtBX, double CtBY, double EndX, double EndY);

Parameters

CtAX The horizontal co-ordinate of the first control point

CtAY The vertical co-ordinate of the first control point

CtBX The horizontal co-ordinate of the second control point

CtBY The vertical co-ordinate of the second control point

EndX The horizontal co-ordinate of the end point of the bezier curve

EndY The vertical co-ordinate of the end point of the bezier curve

AddEmbeddedFile
Document properties

Version history

This function was introduced in Quick PDF Library version 7.11.

Description

Embeds a file into the PDF but does not link it to any part of the document.
The AddFileAttachment function can be used to make the embedded file available as an
attachment in the PDF viewer. The PDF viewer must support this functionality (Adobe Reader 7 and
later). This process can be done in one step using the EmbedFile function.
The AddLinkToEmbeddedFile function can be used to create a hotspot on a page that links to the
embedded file.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddEmbeddedFile(FileName,
 MIMEType: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddEmbeddedFile(
 FileName As String, MIMEType As String) As Long

 DLL

int DPLAddEmbeddedFile(int InstanceID, wchar_t * FileName,
 wchar_t * MIMEType);

Parameters

FileName The path and filename of the file to embed into the PDF.

MIMEType The MIME type of the embedded file. For example "image/jpeg" for a JPEG image.

Return values

0 The file could not be found or there was an error embedding the file into the PDF

Non-zero An EmbeddedFileID that can be used with the AddFileAttachment function

AddFileAttachment
Document properties

Version history

This function was introduced in Quick PDF Library version 7.11.

Description

Makes an embedded file available as an attachment in the PDF viewer, if it supports this
functionality. Adobe Reader 7 and later allow the user to work with file attachments.
First use the AddEmbeddedFile function to embed the file into the PDF.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddFileAttachment(Title: WideString;
 EmbeddedFileID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddFileAttachment(
 Title As String, EmbeddedFileID As Long) As Long

 DLL

int DPLAddFileAttachment(int InstanceID, wchar_t * Title,
 int EmbeddedFileID);

Parameters

Title The title of the attachment that should appear in the PDF viewer

EmbeddedFileID The value returned from the AddEmbeddedFile function

Return values

0 The EmbeddedFileID parameter was invalid, or the Title was blank

1 The embedded file was made available as an attachment successfully

AddFormFieldChoiceSub
Form fields

Version history

This function was introduced in Quick PDF Library version 9.11.

Description

Similar to the AddFormFieldSub function but allows a choice field item's export value and display
value to be set.
The function returns a temporary form field Index which can be used with the
SetFormFieldBounds, SetFormFieldCheckStyle and other functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddFormFieldChoiceSub(Index: Integer;
 SubName, DisplayName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddFormFieldChoiceSub(
 Index As Long, SubName As String,
 DisplayName As String) As Long

 DLL

int DPLAddFormFieldChoiceSub(int InstanceID, int Index, wchar_t * SubName,
 wchar_t * DisplayName);

Parameters

Index The index of the form field to work with. The first form field has an index of 1.
The form field must be a choice field.

SubName The export value of the new sub-field. The value of the form field could be set
to this name using the SetFormFieldValue function.

DisplayName The display name of the new sub-field.

Return values

0 The sub-field was not added. The specified form field may not have been a
choice form field.

Non-zero A temporary field Index

AddFormFieldSub
Form fields

Description

Adds a sub-field to the specified radio-button or choice form field.
The function returns a temporary form field Index which can be used with the
SetFormFieldBounds, SetFormFieldCheckStyle and other functions.
To set a choice item's export value and display value use the AddFormFieldChoiceSub function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddFormFieldSub(Index: Integer;
 SubName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddFormFieldSub(Index As Long,
 SubName As String) As Long

 DLL

int DPLAddFormFieldSub(int InstanceID, int Index, wchar_t * SubName);

Parameters

Index The index of the form field to work with. The first form field has an index of 1.

SubName The name of the new sub-field. The value of the form field could be set to this
name using the SetFormFieldValue function.

Return values

0 The sub-field was not added. The specified form field may not have been a
radio-button or choice form field.

Non-zero A temporary field Index

AddFormFont
Fonts, Form fields

Description

Adds a font to the form.
The font must have been added using one of the Add*Font functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddFormFont(FontID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddFormFont(
 FontID As Long) As Long

 DLL

int DPLAddFormFont(int InstanceID, int FontID);

Parameters

FontID The FontID returned by one of the Add*Font functions

Return values

0 Invalid FontID

Non-zero The font was added successfully, the value returned is the number of fonts
available for use by form fields

AddFreeTextAnnotation
Text, Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 10.11.

Description

Adds a free text annotation to the selected page. If a border and/or fill is specified using the
Options parameter then the settings are retrieved from the current linecolor, fillcolor, linewidth,
pen dash settings.
**** Important Release Notes for 10.3 Final ****
SetLineColor does not affect border color. Border color is currently set to the same color as the text
color due to the way Acrobat works.
SelectFont does not affect font style.Currently the font is hardocded to standard Helvetica font due
to the way Acrobat works.
Angle parameter is still not supported but will be worked on for 10.14 Beta 1.
SetTextSize will affect text size correctly.
SetTextColor will affect text color correctly.
SetLineWidth will adjust border width correctly
SetTransparency will adjust transparency correctly
SetTextAlign will adjust text alignment correctly

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddFreeTextAnnotation(Left, Top, Width,
 Height: Double; Text: WideString; Angle, Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddFreeTextAnnotation(
 Left As Double, Top As Double, Width As Double,
 Height As Double, Text As String, Angle As Long,
 Options As Long) As Long

 DLL

int DPLAddFreeTextAnnotation(int InstanceID, double Left, double Top,
 double Width, double Height, wchar_t * Text, int Angle,
 int Options);

Parameters

Left The horizontal coordinate of the left edge of the annotation rectangle

Top The vertical coordinate of the left edge of the annotation rectangle

Width The width of the annotation rectangle

Height The height of the annotation rectangle

Text The text content of the annotation

Angle The angle of the drawn text. Can be 0, 90, 180 or 270.

Options 0 = Outline
1 = Fill
2 = Fill and Outline

AddGlobalJavaScript
Document properties, JavaScript

Description

Adds JavaScript to a global location in the document.
For example, this allows functions to be defined which can then be called from JavaScript attached
to events.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddGlobalJavaScript(PackageName,
 JavaScript: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddGlobalJavaScript(
 PackageName As String, JavaScript As String) As Long

 DLL

int DPLAddGlobalJavaScript(int InstanceID, wchar_t * PackageName,
 wchar_t * JavaScript);

Parameters

PackageName The name to store the JavaScript under. If any JavaScript is already stored
under this name it will be removed and the new JavaScript will be stored in its
place.

JavaScript The JavaScript to store globally under the specified package name.

Return values

0 The PackageName was empty

1 The JavaScript was stored successfully

AddImageFromFile
Image handling

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Adds an image from a file to the selected document.
Once an image has been added to the document it can be drawn on any page multiple times
without further increasing the size of the PDF file.
Supported image file types are: BMP, TIFF, JPEG, PNG, GIF, WMF and EMF.
For BMP and TIFF images, the CompressImages function can called before calling this function to
compress the image data. Other image types are automatically compressed.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddImageFromFile(FileName: WideString;
 Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddImageFromFile(
 FileName As String, Options As Long) As Long

 DLL

int DPLAddImageFromFile(int InstanceID, wchar_t * FileName, int Options);

Parameters

FileName The file name of the image to add.

Options For multi-page TIFF images this parameter specifies the page number to load.
For PNG images:
0 = Load the image as usual
1 = Load the alpha channel as a greyscale image
2 = Load the image and alpha channel (limit alpha to 8-bit)
3 = Load the image (limit image 8-bit/channel)
4 = Load the alpha channel (limit to 8-bit/channel)
5 = Load the image with alpha channel (limit both to 8-bit/channel)
6 = Load the image and alpha channel
7 = Load the image and ICC color profile
For other image types this parameter should be set to 0.
Setting Options to -1 forces TIFF, EMF and WMF images to be loaded using the
GDI+ graphics library. Multipage TIFF images can also be loaded using GDI+ by
setting the Options parameter to -PageNumber (for example -3 for page 3).

Return values

0 The image could not be added. Either it could not be found or it is in an
unsupported format.

Non-zero The image was added successfully. The ImageID is returned which can be passed
to functions like SelectImage and DrawImage.

AddImageFromFileOffset
Image handling

Description

Adds an image from a part of a file to the selected document.
For example, if many images have been concatenated into one file this function will allow the
individual images to be extracted and added to the document.
Once an image has been added to the document it can be drawn on any page multiple times without
further increasing the size of the PDF file.
Supported image file types are: BMP, TIFF, JPEG, PNG, GIF, WMF and EMF.

For BMP and TIFF images, the CompressImages function can called before calling this function to
compress the image data. Other image types are automatically compressed.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddImageFromFileOffset(
 FileName: WideString; Offset, DataLength, Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddImageFromFileOffset(
 FileName As String, Offset As Long, DataLength As Long,
 Options As Long) As Long

 DLL

int DPLAddImageFromFileOffset(int InstanceID, wchar_t * FileName,
 int Offset, int DataLength, int Options);

Parameters

FileName The name of the file containing the images.

Offset The offset into the file where the required image starts. The first byte in the file
has an offset of 0.

DataLength The length of the image data in bytes

Options For multi-page TIFF images this parameter specifies the page number to load.
For PNG images:
0 = Load the image as usual
1 = Load the alpha channel as a greyscale image
2 = Load the image and alpha channel (limit alpha to 8-bit)
3 = Load the image (limit image 8-bit/channel)
4 = Load the alpha channel (limit to 8-bit/channel)
5 = Load the image with alpha channel (limit both to 8-bit/channel)
6 = Load the image and alpha channel
7 = Load the image and ICC color profile
For other image types this parameter should be set to 0.
Setting Options to -1 forces TIFF, EMF and WMF images to be loaded using the
GDI+ graphics library. Multipage TIFF images can also be loaded using GDI+ by
setting the Options parameter to -PageNumber (for example -3 for page 3).

Return values

0 The image could not be read from the file. This could indicate invalid image data or
the file could not be found.

Non-zero The image was read from the file and successfully added to the document. The
value returned is the ID of the image which can be used with the image drawing
functions such as DrawImage.

AddImageFromStream
Image handling

Description

Adds an image from a TStream to the selected document.
Once an image has been added to the document it can be drawn on any page multiple times
without further increasing the size of the PDF file.
Supported image file types are: BMP, TIFF, JPEG, PNG, GIF, WMF and EMF.
For BMP and TIFF images, the CompressImages function can called before calling this function to
compress the image data. Other image types are automatically compressed.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddImageFromStream(InStream: TStream;
 Options: Integer): Integer;

Parameters

InStream The TStream object containing the image data. The current position in the stream
will be ignored, image data will be read from position 0 in the stream.

Options For multi-page TIFF images this parameter specifies the page number to load.
For PNG images:
0 = Load the image as usual
1 = Load the alpha channel as a greyscale image
2 = Load the image and alpha channel (limit alpha to 8-bit)
3 = Load the image (limit image 8-bit/channel)
4 = Load the alpha channel (limit to 8-bit/channel)
5 = Load the image with alpha channel (limit both to 8-bit/channel)
6 = Load the image and alpha channel
7 = Load the image and ICC color profile
For other image types this parameter should be set to 0.
Setting Options to -1 forces TIFF, EMF and WMF images to be loaded using the
GDI+ graphics library. Multipage TIFF images can also be loaded using GDI+ by
setting the Options parameter to -PageNumber (for example -3 for page 3).

Return values

0 There was an error reading valid image data from the stream

Non-zero The image was successfully added to the document. The value returned is the ID of
the image which can be used with the image drawing functions such as
DrawImage.

AddImageFromString
Image handling

Description

Adds an image from memory to the selected document.
Once an image has been added to the document it can be drawn on any page multiple times
without further increasing the size of the PDF file.
Supported image file types are: BMP, TIFF, JPEG, PNG, GIF, WMF and EMF.
For BMP and TIFF images, the CompressImages function can called before calling this function to
compress the image data. Other image types are automatically compressed.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddImageFromString(
 const Source: AnsiString; Options: Integer): Integer;

 DLL

int DPLAddImageFromString(int InstanceID, char * Source, int Options);

Parameters

Source A string containing the image data. In the ActiveX version of the library this string
must contain 16-bit characters, only the lower 8-bits of each character will be used.

Options For multi-page TIFF images this parameter specifies the page number to load.
For PNG images:
0 = Load the image as usual
1 = Load the alpha channel as a greyscale image
2 = Load the image and alpha channel (limit alpha to 8-bit)
3 = Load the image (limit image 8-bit/channel)
4 = Load the alpha channel (limit to 8-bit/channel)
5 = Load the image with alpha channel (limit both to 8-bit/channel)
6 = Load the image and alpha channel
7 = Load the image and ICC color profile
For other image types this parameter should be set to 0.
Setting Options to -1 forces TIFF, EMF and WMF images to be loaded using the GDI+
graphics library. Multipage TIFF images can also be loaded using GDI+ by setting the
Options parameter to -PageNumber (for example -3 for page 3).

Return values

0 The image data was invalid or the image was in an unsupported format

1 The image was added successfully. The value returned is the ImageID which can be
used with functions like SelectImage and DrawImage.

AddImageFromVariant
Image handling

Description

Adds an image from a variant byte array to the selected document.
Once an image has been added to the document it can be drawn on any page multiple times
without further increasing the size of the PDF file.
Supported image file types are: BMP, TIFF, JPEG, PNG, GIF, WMF and EMF.
For BMP and TIFF images, the CompressImages function can called before calling this function to
compress the image data. Other image types are automatically compressed.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddImageFromVariant(
 SourceData As Variant, Options As Long) As Long

Parameters

SourceData A variant containing the image data

Options For multi-page TIFF images this parameter specifies the page number to load.
For PNG images:
0 = Load the image as usual
1 = Load the alpha channel as a greyscale image
2 = Load the image and alpha channel (limit alpha to 8-bit)
3 = Load the image (limit image 8-bit/channel)
4 = Load the alpha channel (limit to 8-bit/channel)
5 = Load the image with alpha channel (limit both to 8-bit/channel)
6 = Load the image and alpha channel
7 = Load the image and ICC color profile
For other image types this parameter should be set to 0.
Setting Options to -1 forces TIFF, EMF and WMF images to be loaded using the
GDI+ graphics library. Multipage TIFF images can also be loaded using GDI+ by
setting the Options parameter to -PageNumber (for example -3 for page 3).

Return values

0 The image could not be added

Non-zero The image was added successfully. This is the ID of the new image.

AddLGIDictToPage
Page properties, Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 7.15.

Description

Adds a new LGIDict object to the selected page.
This is used with the GeoPDF system as defined in Open Geospatial Consortium Inc.'s OGC
08-139r2 specification.
More than one dictionary can be added to the page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddLGIDictToPage(
 DictContent: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddLGIDictToPage(
 DictContent As String) As Long

 DLL

int DPLAddLGIDictToPage(int InstanceID, wchar_t * DictContent);

Parameters

DictContent The LGIDict dictionary content to add to the page.

Return values

0 The LGI dictionary could not be added to the page. Check that the dictionary
content string is a valid PDF dictionary.

1 The LGI dictionary was added successfully.

AddLineToPath
Vector graphics, Path definition and drawing

Description

Adds a line to the current path.
The line is drawn from the last point to the point defined by (EndX, EndY).

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddLineToPath(EndX, EndY: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddLineToPath(EndX As Double,
 EndY As Double) As Long

 DLL

int DPLAddLineToPath(int InstanceID, double EndX, double EndY);

Parameters

EndX The horizontal co-ordinate of the end point of the line to add to the path

EndY The vertical co-ordinate of the end point of the line to add to the path

AddLinkToDestination
Annotations and hotspot links, Page properties

Version history

This function was introduced in Quick PDF Library version 7.22.

Description

Adds a clickable hotspot rectangle to the selected page which links to another page in the same
document. The target page, position and zoom level are specified by a destination object which can
be created with the NewDestination function.
Use the SetAnnotBorderColor function to change the color of the hotspot border.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddLinkToDestination(Left, Top, Width,
 Height: Double; DestID, Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddLinkToDestination(
 Left As Double, Top As Double, Width As Double,
 Height As Double, DestID As Long, Options As Long) As Long

 DLL

int DPLAddLinkToDestination(int InstanceID, double Left, double Top,
 double Width, double Height, int DestID, int Options);

Parameters

Left The left edge of the hotspot rectangle

Top The top edge of the hotspot rectangle

Width The width of the hotspot rectangle

Height The height of the hotspot rectangle

DestID The DestID of a destination object

Options Specifies the appearance of the link:
0 = No border
1 = Draw a border

Return values

0 The DestID property was invalid

1 The link annotation was created successfully

AddLinkToEmbeddedFile
Document properties, Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 7.11.

Description

Adds a clickable hotspot rectangle to the selected page which links to an embedded file.

Files can be embedded into the PDF using the AddEmbeddedFile function.
The function definition was changed in version 9.11 to provide separate parameters for the
title/contents and transparency.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddLinkToEmbeddedFile(Left, Top, Width,
 Height: Double; EmbeddedFileID: Integer; Title, Contents: WideString;
 IconType, Transpareny: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddLinkToEmbeddedFile(
 Left As Double, Top As Double, Width As Double,
 Height As Double, EmbeddedFileID As Long, Title As String,
 Contents As String, IconType As Long,
 Transpareny As Long) As Long

 DLL

int DPLAddLinkToEmbeddedFile(int InstanceID, double Left, double Top,
 double Width, double Height, int EmbeddedFileID,
 wchar_t * Title, wchar_t * Contents, int IconType,
 int Transpareny);

Parameters

Left The horizontal co-ordinate of the left edge of the hotspot rectangle

Top The vertical co-ordinate of the top of the hotspot rectangle

Width The width of the hotspot rectangle

Height The height of the hotspot rectangle

EmbeddedFileID The value returned from the AddEmbeddedFile function

Title The title of the attachment that should appear in the PDF viewer.

Contents The text to use for the contents of the popup

IconType 0 = Standard icon (PushPin)
1 = 28x28 disk image
2 = No icon
3 = Graph
4 = Paperclip
5 = Tag
6 = Solid white rectangle

Transpareny The transparency percentage to apply ranging from 0 to 100. A value of 0
indicates 0% transparency which is fully opaque (no transparency). A value of
100 indicates 100% transparency which would make the icon invisible.

Return values

0 The EmbeddedFileID parameter was invalid

1 The link was created successfully

AddLinkToFile
Annotations and hotspot links

Description

Adds a clickable hotspot rectangle to the selected page which links to a specific page and position
in another PDF document.
Use the SetAnnotBorderColor function to change the color of the hotspot border.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddLinkToFile(Left, Top, Width,
 Height: Double; FileName: WideString; Page: Integer; Position: Double;
 NewWindow, Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddLinkToFile(Left As Double,
 Top As Double, Width As Double, Height As Double,
 FileName As String, Page As Long, Position As Double,
 NewWindow As Long, Options As Long) As Long

 DLL

int DPLAddLinkToFile(int InstanceID, double Left, double Top,
 double Width, double Height, wchar_t * FileName, int Page,
 double Position, int NewWindow, int Options);

Parameters

Left The horizontal co-ordinate of the left edge of the hotspot rectangle

Top The vertical co-ordinate of the top edge of the hotspot rectangle

Width The width of the hotspot rectangle

Height The height of the hotspot rectangle

FileName The path and file name of the PDF document to link to.

Page The page in the destination document to link to

Position The vertical co-ordinate on the destination page to link to

NewWindow 0 = Close the current document and then open the new document
1 = Open the current document in a new window

Options Specifies the appearance of the link:
0 = No border
1 = Draw a border

AddLinkToFileDest
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 10.13.

Description

Adds a clickable hotspot rectangle to the selected named destination which links to a specific page
and position in another PDF document.
Use the SetAnnotBorderColor function to change the color of the hotspot border.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddLinkToFileDest(Left, Top, Width,
 Height: Double; FileName, NamedDest: WideString; Position: Double;
 NewWindow, Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddLinkToFileDest(
 Left As Double, Top As Double, Width As Double,
 Height As Double, FileName As String, NamedDest As String,
 Position As Double, NewWindow As Long, Options As Long) As Long

 DLL

int DPLAddLinkToFileDest(int InstanceID, double Left, double Top,
 double Width, double Height, wchar_t * FileName,
 wchar_t * NamedDest, double Position, int NewWindow,
 int Options);

Parameters

Left The horizontal co-ordinate of the left edge of the hotspot rectangle

Top The vertical co-ordinate of the top edge of the hotspot rectangle

Width The width of the hotspot rectangle

Height The height of the hotspot rectangle

FileName The path and file name of the PDF document to link to.

NamedDest The Named Destination string in the destination document to link to

Position The vertical co-ordinate on the destination page to link to

NewWindow 0 = Close the current document and then open the new document
1 = Open the current document in a new window

Options Specifies the appearance of the link:
0 = No border
1 = Draw a border

AddLinkToFileEx
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 9.16.

Description

Adds a clickable hotspot rectangle to the selected page which links to a specific page and position in another PDF document.

Use the SetAnnotBorderColor function to change the color of the hotspot border.

The link to the target document is only via the file name. This means the page dimensions of the target document are not known so the
DestLeft, DestTop, DestRight and DestBottom parameters are always specified in points measured from the bottom left corner of the destination
page's MediaBox.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddLinkToFileEx(Left, Top, Width,
 Height: Double; FileName: WideString; DestPage, NewWindow, Options,
 Zoom, DestType: Integer; DestLeft, DestTop, DestRight,
 DestBottom: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddLinkToFileEx(Left As Double,
 Top As Double, Width As Double, Height As Double,
 FileName As String, DestPage As Long, NewWindow As Long,
 Options As Long, Zoom As Long, DestType As Long,
 DestLeft As Double, DestTop As Double, DestRight As Double,
 DestBottom As Double) As Long

 DLL

int DPLAddLinkToFileEx(int InstanceID, double Left, double Top,
 double Width, double Height, wchar_t * FileName, int DestPage,
 int NewWindow, int Options, int Zoom, int DestType,
 double DestLeft, double DestTop, double DestRight,
 double DestBottom);

Parameters

Left The horizontal co-ordinate of the left edge of the hotspot rectangle

Top The vertical co-ordinate of the top edge of the hotspot rectangle

Width The width of the hotspot rectangle

Height The height of the hotspot rectangle

FileName The path and file name of the PDF document to link to.

DestPage The page in the destination document to link to

NewWindow 0 = Close the current document and then open the new document
1 = Open the current document in a new window

Options Specifies the appearance of the link:
0 = No border
1 = Draw a border

Zoom The zoom percentage to use for the destination object, valid values from 0 to 6400. Only used for DestType = 1, should
be set to 0 for other DestTypes.

DestType 1 = "XYZ" - the target page is positioned at the point specified by the Left and Top parameters. The Zoom parameter
specifies the zoom percentage.
2 = "Fit" - the entire page is zoomed to fit the window. None of the other parameters are used and should be set to zero.
3 = "FitH" - the page is zoomed so that the entire width of the page is visible. The height of the page may be greater or
less than the height of the window. The page is positioned at the vertical position specified by the Top parameter.
4 = "FitV" - the page is zoomed so that the entire height of the page can be seen. The width of the page may be greater
or less than the width of the window. The page is positioned at the horizontal position specified by the Left parameter.
5 = "FitR" - the page is zoomed so that a certain rectangle on the page is visible. The Left, Top, Right and Bottom
parameters define the rectangular area on the page.
6 = "FitB" - the page is zoomed so that it's bounding box is visible.
7 = "FitBH" - the page is positioned vertically at the position specified by the Top parameter. The page is zoomed so that
the entire width of the page's bounding box is visible.
8 = "FitBV" - the page is positioned at the horizontal position specified by the Left parameter. The page is zoomed just
enough to fit the entire height of the bounding box into the window.

DestLeft The horizontal position used by DestType = 1, 4, 5 and 8

DestTop The vertical position used by DestType = 1, 3, 5 and 7

DestRight The horizontal position of the righthand edge of the rectangle. Used by DestType = 5

DestBottom The horizontal position of the bottom of the rectangle. Used by DestType = 5

AddLinkToJavaScript
JavaScript, Annotations and hotspot links

Description

Adds a clickable hotspot rectangle to the selected page which links to a JavaScript action.
Use the SetAnnotBorderColor function to change the color of the hotspot border.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddLinkToJavaScript(Left, Top, Width,
 Height: Double; JavaScript: WideString; Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddLinkToJavaScript(
 Left As Double, Top As Double, Width As Double,
 Height As Double, JavaScript As String,
 Options As Long) As Long

 DLL

int DPLAddLinkToJavaScript(int InstanceID, double Left, double Top,
 double Width, double Height, wchar_t * JavaScript,
 int Options);

Parameters

Left The horizontal co-ordinate of the left edge of the hotspot rectangle

Top The vertical co-ordinate of the top edge of the hotspot rectangle

Width The width of the hotspot rectangle

Height The height of the hotspot rectangle

JavaScript The JavaScript to execute.

Options Specifies the appearance of the link:
0 = No border
1 = Draw a border

AddLinkToLocalFile
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 7.19.

Description

Adds a clickable hotspot rectangle to the selected page which links to a local file.
The file doesn't have to exist when the PDF is created but should exist when the PDF is viewed for
the link to work.
Use the SetAnnotBorderColor function to change the color of the hotspot border.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddLinkToLocalFile(Left, Top, Width,
 Height: Double; FileName: WideString; Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddLinkToLocalFile(
 Left As Double, Top As Double, Width As Double,
 Height As Double, FileName As String, Options As Long) As Long

 DLL

int DPLAddLinkToLocalFile(int InstanceID, double Left, double Top,
 double Width, double Height, wchar_t * FileName, int Options);

Parameters

Left The left edge of the hotspot rectangle

Top The top edge of the hotspot rectangle

Width The width of the hotspot rectangle

Height The height of the hotspot rectangle

FileName The relative or absolute path to the local file.

Options Specifies the appearance of the link and whether the target is opened in a new
window or the same window:
0 = No border, same window
1 = Draw a border, same window
2 = No border, new window
3 = Draw a border, new window

AddLinkToPage
Annotations and hotspot links, Page properties

Description

Adds a clickable hotspot rectangle to the selected page which links to another page in the same
document.
Use the SetAnnotBorderColor function to change the color of the hotspot border.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddLinkToPage(Left, Top, Width,
 Height: Double; Page: Integer; Position: Double;
 Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddLinkToPage(Left As Double,
 Top As Double, Width As Double, Height As Double,
 Page As Long, Position As Double, Options As Long) As Long

 DLL

int DPLAddLinkToPage(int InstanceID, double Left, double Top,
 double Width, double Height, int Page, double Position,
 int Options);

Parameters

Left The left edge of the hotspot rectangle

Top The top edge of the hotspot rectangle

Width The width of the hotspot rectangle

Height The height of the hotspot rectangle

Page The destination page number to link to

Position The vertical position on the destination page to link to

Options Specifies the appearance of the link:
0 = No border
1 = Draw a border

AddLinkToWeb
Annotations and hotspot links

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Adds a clickable hotspot rectangle to the selected page which links to a URL on the internet.
This can also be used to link to an e-mail address.
Use the SetAnnotBorderColor function to change the color of the hotspot border.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddLinkToWeb(Left, Top, Width,
 Height: Double; Link: WideString; Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddLinkToWeb(Left As Double,
 Top As Double, Width As Double, Height As Double,
 Link As String, Options As Long) As Long

 DLL

int DPLAddLinkToWeb(int InstanceID, double Left, double Top, double Width,
 double Height, wchar_t * Link, int Options);

Parameters

Left The left edge of the hotspot rectangle

Top The top edge of the hotspot rectangle

Width The width of the hotspot rectangle

Height The height of the hotspot rectangle

Link The URL to link to. Some examples:
"http://www.example.com/"
"mailto:info@example.com"

Options Specifies the appearance of the link:
0 = No border
1 = Draw a border

AddNoteAnnotation
Annotations and hotspot links

Description

Adds a note annotation to the selected page. The values of the color parameters range from 0 to 1, with 0
indicating 0% and 1 indicating 100% of the color.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddNoteAnnotation(Left, Top: Double;
 AnnotType: Integer; PopupLeft, PopupTop, PopupWidth,
 PopupHeight: Double; Title, Contents: WideString; Red, Green,
 Blue: Double; Open: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddNoteAnnotation(
 Left As Double, Top As Double, AnnotType As Long,
 PopupLeft As Double, PopupTop As Double, PopupWidth As Double,
 PopupHeight As Double, Title As String, Contents As String,
 Red As Double, Green As Double, Blue As Double,
 Open As Long) As Long

 DLL

int DPLAddNoteAnnotation(int InstanceID, double Left, double Top,
 int AnnotType, double PopupLeft, double PopupTop,
 double PopupWidth, double PopupHeight, wchar_t * Title,
 wchar_t * Contents, double Red, double Green, double Blue,
 int Open);

Parameters

Left The horizontal co-ordinate of the anchor for the annotation

Top The vertical co-ordinate of the anchor for the annotation

AnnotType The annotation type:
0 = Note
1 = Comment
2 = Help
3 = Insert
4 = Key
5 = New paragraph
6 = Paragraph
Add 100 to any of the above values to suppress the date shown in the popup
annotation's title

PopupLeft The horizontal co-ordinate of the left edge of the popup window

PopupTop The vertical co-ordinate of the left edge of the popup window

PopupWidth The width of the popup window

PopupHeight The height of the popup window

Title The title of the annotation

Contents The body of the popup annotation

Red The red component of the color of the annotation

Green The green component of the color of the annotation

Blue The blue component of the color of the annotation

Open Specifies whether to show the annotation when the document is opened:
0 = hide
1 = show

AddOpenTypeFontFromFile
Text, Fonts

Version history

This function was introduced in Quick PDF Library version 8.12.

Description

This function is identical to AddTrueTypeFontFromFile. Both functions allow a TrueType,
OpenType/TrueType or OpenType/CFF font to be added from a file.
This version of the function provides an Options parameter which may be expanded in future to
support advanced OpenType features.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddOpenTypeFontFromFile(
 FileName: WideString; Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddOpenTypeFontFromFile(
 FileName As String, Options As Long) As Long

 DLL

int DPLAddOpenTypeFontFromFile(int InstanceID, wchar_t * FileName,
 int Options);

Parameters

FileName The font file name.

Options Should be set to 0.

Return values

0 The font could not be embedded

Non-zero The ID of the font that was successfully added. This ID can be used with the
SelectFont function to select the font

AddPageLabels
Page properties

Description

Adds a range of page labels to the selected document. A range starting from page 1 must be
present in the document for the page labels to display correctly.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddPageLabels(Start, Style,
 Offset: Integer; Prefix: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddPageLabels(Start As Long,
 Style As Long, Offset As Long, Prefix As String) As Long

 DLL

int DPLAddPageLabels(int InstanceID, int Start, int Style, int Offset,
 wchar_t * Prefix);

Parameters

Start The starting page for the range of page labels

Style 0 = No numbers
1 = Decimal arabic numerals
2 = Uppercase roman numerals
3 = Lowercase roman numerals
4 = Uppercase letters (A to Z for first 26 pages, AA to ZZ for next 26, etc.)
5 = Lowercase letters (a to z for first 26 pages, aa to zz for next 26, etc.)

Offset The value of the numeric portion for the first page label in the range. Subsequent
values will be numbered sequentially from this value, which much be greater than or
equal to 1.

Prefix The prefix for the page labels in this range.

Return values

0 The Style parameter was out of range

1 The page label range was added successfully

AddPageMatrix
Page manipulation

Version history

This function was introduced in Quick PDF Library version 10.15.

Description

Function will scale the page contents in either direction and also move the page up, down, left or
right. The parameters are in points where 72 points = 1 inch.
xscale = 1, yscale = 1 is the required for 100% scaling.
scale = 2 scale the width by a factor of 2 or 200%
xoffset = 72 moves the page 1 inch to the right. -72 1 inch to the left
yoffset = 72 moves the page 1 up and -72 moves the page 1 inch down

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddPageMatrix(xscale, yscale, xoffset,
 yoffset: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddPageMatrix(xscale As Double,
 yscale As Double, xoffset As Double, yoffset As Double) As Long

 DLL

int DPLAddPageMatrix(int InstanceID, double xscale, double yscale,
 double xoffset, double yoffset);

Parameters

xscale Horizontal scale

yscale Vertical scale

xoffset Horizontal offset

yoffset Vertical offset

Return values

1 Page matrix added successfuly

0 Failed adding page matrix

AddRelativeLinkToFile
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 11.11.

Description

Adds a clickable hotspot rectangle to the selected page which links using relative path to a specific
page and position in another PDF document.
Use the SetAnnotBorderColor function to change the color of the hotspot border.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddRelativeLinkToFile(Left, Top, Width,
 Height: Double; FileName: WideString; Page: Integer; Position: Double;
 NewWindow, Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddRelativeLinkToFile(
 Left As Double, Top As Double, Width As Double,
 Height As Double, FileName As String, Page As Long,
 Position As Double, NewWindow As Long, Options As Long) As Long

 DLL

int DPLAddRelativeLinkToFile(int InstanceID, double Left, double Top,
 double Width, double Height, wchar_t * FileName, int Page,
 double Position, int NewWindow, int Options);

Parameters

Left The horizontal co-ordinate of the left edge of the hotspot rectangle

Top The vertical co-ordinate of the top edge of the hotspot rectangle

Width The width of the hotspot rectangle

Height The height of the hotspot rectangle

FileName The full absolute path and file name of the PDF document to link to, it will be
converted to relative path.

Page The page in the destination document to link to

Position The vertical co-ordinate on the destination page to link to

NewWindow 0 = Close the current document and then open the new document
1 = Open the current document in a new window

Options Specifies the appearance of the link:
0 = No border
1 = Draw a border

AddRelativeLinkToFileDest
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 11.11.

Description

Adds a clickable hotspot rectangle to the selected named destination which links to a specific page
and position in another PDF document, using relative path.
Use the SetAnnotBorderColor function to change the color of the hotspot border.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddRelativeLinkToFileDest(Left, Top, Width,
 Height: Double; FileName, NamedDest: WideString; Position: Double;
 NewWindow, Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddRelativeLinkToFileDest(
 Left As Double, Top As Double, Width As Double,
 Height As Double, FileName As String, NamedDest As String,
 Position As Double, NewWindow As Long, Options As Long) As Long

 DLL

int DPLAddRelativeLinkToFileDest(int InstanceID, double Left, double Top,
 double Width, double Height, wchar_t * FileName,
 wchar_t * NamedDest, double Position, int NewWindow,
 int Options);

Parameters

Left The horizontal co-ordinate of the left edge of the hotspot rectangle

Top The vertical co-ordinate of the top edge of the hotspot rectangle

Width The width of the hotspot rectangle

Height The height of the hotspot rectangle

FileName The full absolute path and file name of the PDF document to link to, it will be
converted to relative path.

NamedDest The Named Destination string in the destination document to link to

Position The vertical co-ordinate on the destination page to link to

NewWindow 0 = Close the current document and then open the new document
1 = Open the current document in a new window

Options Specifies the appearance of the link:
0 = No border
1 = Draw a border

AddRelativeLinkToFileEx
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 11.11.

Description

Adds a clickable hotspot rectangle to the selected page which links using relative path to a specific page and position in another PDF document.

Use the SetAnnotBorderColor function to change the color of the hotspot border.

The link to the target document is only via the file name. This means the page dimensions of the target document are not known so the
DestLeft, DestTop, DestRight and DestBottom parameters are always specified in points measured from the bottom left corner of the destination
page's MediaBox.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddRelativeLinkToFileEx(Left, Top, Width,
 Height: Double; FileName: WideString; DestPage, NewWindow, Options,
 Zoom, DestType: Integer; DestLeft, DestTop, DestRight,
 DestBottom: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddRelativeLinkToFileEx(
 Left As Double, Top As Double, Width As Double,
 Height As Double, FileName As String, DestPage As Long,
 NewWindow As Long, Options As Long, Zoom As Long,
 DestType As Long, DestLeft As Double, DestTop As Double,
 DestRight As Double, DestBottom As Double) As Long

 DLL

int DPLAddRelativeLinkToFileEx(int InstanceID, double Left, double Top,
 double Width, double Height, wchar_t * FileName, int DestPage,
 int NewWindow, int Options, int Zoom, int DestType,
 double DestLeft, double DestTop, double DestRight,
 double DestBottom);

Parameters

Left The horizontal co-ordinate of the left edge of the hotspot rectangle

Top The vertical co-ordinate of the top edge of the hotspot rectangle

Width The width of the hotspot rectangle

Height The height of the hotspot rectangle

FileName The full absolute path and file name of the PDF document to link to, it will be converted to relative path.

DestPage The page in the destination document to link to

NewWindow 0 = Close the current document and then open the new document
1 = Open the current document in a new window

Options Specifies the appearance of the link:
0 = No border
1 = Draw a border

Zoom The zoom percentage to use for the destination object, valid values from 0 to 6400. Only used for DestType = 1, should
be set to 0 for other DestTypes.

DestType 1 = "XYZ" - the target page is positioned at the point specified by the Left and Top parameters. The Zoom parameter
specifies the zoom percentage.
2 = "Fit" - the entire page is zoomed to fit the window. None of the other parameters are used and should be set to zero.
3 = "FitH" - the page is zoomed so that the entire width of the page is visible. The height of the page may be greater or
less than the height of the window. The page is positioned at the vertical position specified by the Top parameter.
4 = "FitV" - the page is zoomed so that the entire height of the page can be seen. The width of the page may be greater
or less than the width of the window. The page is positioned at the horizontal position specified by the Left parameter.
5 = "FitR" - the page is zoomed so that a certain rectangle on the page is visible. The Left, Top, Right and Bottom
parameters define the rectangular area on the page.
6 = "FitB" - the page is zoomed so that it's bounding box is visible.
7 = "FitBH" - the page is positioned vertically at the position specified by the Top parameter. The page is zoomed so that
the entire width of the page's bounding box is visible.
8 = "FitBV" - the page is positioned at the horizontal position specified by the Left parameter. The page is zoomed just
enough to fit the entire height of the bounding box into the window.

DestLeft The horizontal position used by DestType = 1, 4, 5 and 8

DestTop The vertical position used by DestType = 1, 3, 5 and 7

DestRight The horizontal position of the righthand edge of the rectangle. Used by DestType = 5

DestBottom The horizontal position of the bottom of the rectangle. Used by DestType = 5

AddRelativeLinkToLocalFile
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 11.11.

Description

Adds a clickable hotspot rectangle to the selected page which links using relative path to a local
file.
The file doesn't have to exist when the PDF is created but should exist when the PDF is viewed for
the link to work.
Use the SetAnnotBorderColor function to change the color of the hotspot border.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddRelativeLinkToLocalFile(Left, Top,
 Width, Height: Double; FileName: WideString; Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddRelativeLinkToLocalFile(
 Left As Double, Top As Double, Width As Double,
 Height As Double, FileName As String, Options As Long) As Long

 DLL

int DPLAddRelativeLinkToLocalFile(int InstanceID, double Left, double Top,
 double Width, double Height, wchar_t * FileName, int Options);

Parameters

Left The horizontal co-ordinate of the left edge of the hotspot rectangle

Top The vertical co-ordinate of the top edge of the hotspot rectangle

Width The width of the hotspot rectangle

Height The height of the hotspot rectangle

FileName The full absolute path and file name of the PDF document to link to, it will be
converted to relative path.

Options Specifies the appearance of the link:
0 = No border
1 = Draw a border

AddSVGAnnotationFromFile
Vector graphics, Image handling, Annotations and hotspot links, Page layout

Description

Adds an SVG file as an annotation to the current page. This is only supported if the PDF is viewed
using Adobe Acrobat 6 or Adobe Reader 6. Earlier and later versions will not show the SVG
annotation.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddSVGAnnotationFromFile(Left, Top, Width,
 Height: Double; FileName: WideString; Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddSVGAnnotationFromFile(
 Left As Double, Top As Double, Width As Double,
 Height As Double, FileName As String, Options As Long) As Long

 DLL

int DPLAddSVGAnnotationFromFile(int InstanceID, double Left, double Top,
 double Width, double Height, wchar_t * FileName, int Options);

Parameters

Left The horizontal co-ordinate of the left edge of the annotation rectangle

Top The vertical co-ordinate of the top edge of the annotation rectangle

Width The width of the annotation rectangle

Height The height of the annotation rectangle

FileName The path and name of the file containing the SVG image.

Options This parameter is ignored and should be set to 0

Return values

0 The SVG file could not be opened

1 The SVG annotation was added successfully

AddSWFAnnotationFromFile
Vector graphics, Image handling, Annotations and hotspot links, Page layout

Version history

This function was introduced in Quick PDF Library version 8.16.

Description

Adds a Flash SWF file as an annotation to the current page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddSWFAnnotationFromFile(Left, Top, Width,
 Height: Double; FileName, Title: WideString; Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddSWFAnnotationFromFile(
 Left As Double, Top As Double, Width As Double,
 Height As Double, FileName As String, Title As String,
 Options As Long) As Long

 DLL

int DPLAddSWFAnnotationFromFile(int InstanceID, double Left, double Top,
 double Width, double Height, wchar_t * FileName,
 wchar_t * Title, int Options);

Parameters

Left The horizontal co-ordinate of the left edge of the annotation rectangle

Top The vertical co-ordinate of the top edge of the annotation rectangle

Width The width of the annotation rectangle

Height The height of the annotation rectangle

FileName The path and name of the SWF file

Title The annotation title

Options Annotation event to activate SWF:
0 = Page visible
1 = Mouse enter
2 = Mouse button click

Return values

0 The specified file could not be found

1 The SWF was successfully added as an annotation

AddSeparationColor
Vector graphics, Color

Description

Adds a separation color to the document.
A separation color has a name and an equivalent color in the CMYK color space. If the document is
viewed the CMYK color will be used. If the document is printed to an image setter a separation with
the specified name will be generated.
The values of the color parameters range from 0 to 1, with 0 indicating 0% and 1 indicating 100%
of the color.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddSeparationColor(ColorName: WideString;
 C, M, Y, K: Double; Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddSeparationColor(
 ColorName As String, C As Double, M As Double, Y As Double,
 K As Double, Options As Long) As Long

 DLL

int DPLAddSeparationColor(int InstanceID, wchar_t * ColorName, double C,
 double M, double Y, double K, int Options);

Parameters

ColorName The name of the separation color, for example "PANTONE 403 EC". This can be
any name you want, but is usually set to the name of a specific spot color that
your printing press will know what to do with.

C The cyan component of the color equivalent to the spot color

M The magenta component of the color equivalent to the spot color

Y The yellow component of the color equivalent to the spot color

K The black component of the color equivalent to the spot color

Options This parameter is ignored and should be set to 0

Return values

0 The separation color could not be added. The color name may already have been
used.

1 The separation color was added successfully

AddStampAnnotation
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 9.11.

Description

Adds a stamp annotation to the selected page. The values of the color parameters range from 0 to 1, with 0 indicating
0% and 1 indicating 100% of the color. The color only affects the background color of the popup and not the stamp
itself.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddStampAnnotation(Left, Top, Width,
 Height: Double; StampType: Integer; Title, Contents: WideString; Red,
 Green, Blue: Double; Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddStampAnnotation(
 Left As Double, Top As Double, Width As Double,
 Height As Double, StampType As Long, Title As String,
 Contents As String, Red As Double, Green As Double,
 Blue As Double, Options As Long) As Long

 DLL

int DPLAddStampAnnotation(int InstanceID, double Left, double Top,
 double Width, double Height, int StampType, wchar_t * Title,
 wchar_t * Contents, double Red, double Green, double Blue,
 int Options);

Parameters

Left The horizontal coordinate of the left edge of the stamp annotation

Top The vertical coordinate of the top edge of the stamp annotation

Width The width of the annotation

Height The height of the annotation

StampType 0 = Approved
1 = Experimental
2 = NotApproved
3 = AsIs
4 = Expired
5 = NotForPublicRelease
6 = Confidential
7 = Final
8 = Sold
9 = Departmental
10 = ForComment
11 = TopSecret
12 = Draft
13 = ForPublicRelease

Title The title of the popup annotation

Contents The contents of the popup annotation

Red The red component of the popup annotation's background color

Green The green component of the popup annotation's background color

Blue The blue component of the popup annotation's background color

Options Reserved for future use. Should always be set to 0.

Return values

0 The stamp annotation could not be added to the page

1 Success

AddStampAnnotationFromImage
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 10.13.

Description

Adds a custom stamp annotation to the selected page. The values of the color parameters range
from 0 to 1, with 0 indicating 0% and 1 indicating 100% of the color. The color only affects the
background color of the popup and not the stamp itself.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddStampAnnotationFromImage(Left, Top,
 Width, Height: Double; FileName, Title, Contents: WideString; Red,
 Green, Blue: Double; Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddStampAnnotationFromImage(
 Left As Double, Top As Double, Width As Double,
 Height As Double, FileName As String, Title As String,
 Contents As String, Red As Double, Green As Double,
 Blue As Double, Options As Long) As Long

 DLL

int DPLAddStampAnnotationFromImage(int InstanceID, double Left,
 double Top, double Width, double Height, wchar_t * FileName,
 wchar_t * Title, wchar_t * Contents, double Red, double Green,
 double Blue, int Options);

Parameters

Left The horizontal coordinate of the left edge of the stamp annotation

Top The vertical coordinate of the top edge of the stamp annotation

Width The width of the annotation

Height The height of the annotation

FileName Complete FilePath to the image

Title The title of the popup annotation

Contents The contents of the popup annotation

Red The red component of the popup annotation's background color

Green The green component of the popup annotation's background color

Blue The blue component of the popup annotation's background color

Options Reserved for future use. Should always be set to 0.

Return values

0 The stamp annotation could not be added to the page

1 Success

AddStampAnnotationFromImageID
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 10.14.

Description

Adds a custom stamp annotation to the selected page based on the image ID that is already added
to the document. The values of the color parameters range from 0 to 1, with 0 indicating 0% and 1
indicating 100% of the color. The color only affects the background color of the popup and not the
stamp itself.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddStampAnnotationFromImageID(Left, Top,
 Width, Height: Double; ImageID: Integer; Title, Contents: WideString;
 Red, Green, Blue: Double; Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddStampAnnotationFromImageID(
 Left As Double, Top As Double, Width As Double,
 Height As Double, ImageID As Long, Title As String,
 Contents As String, Red As Double, Green As Double,
 Blue As Double, Options As Long) As Long

 DLL

int DPLAddStampAnnotationFromImageID(int InstanceID, double Left,
 double Top, double Width, double Height, int ImageID,
 wchar_t * Title, wchar_t * Contents, double Red, double Green,
 double Blue, int Options);

Parameters

Left The horizontal coordinate of the left edge of the stamp annotation

Top The vertical coordinate of the top edge of the stamp annotation

Width The width of the annotation

Height The height of the annotation

ImageID ID of the image that should be used as stamp

Title The title of the popup annotation

Contents The contents of the popup annotation

Red The red component of the popup annotation's background color

Green The green component of the popup annotation's background color

Blue The blue component of the popup annotation's background color

Options Reserved for future use. Should always be set to 0.

Return values

0 The stamp annotation could not be added to the page

1 Success

AddStandardFont
Text, Fonts

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Adds a standard font to the document. These standard fonts will always be available on all PDF
viewers.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddStandardFont(
 StandardFontID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddStandardFont(
 StandardFontID As Long) As Long

 DLL

int DPLAddStandardFont(int InstanceID, int StandardFontID);

Parameters

StandardFontID The ID of the font to add:
0 = Courier
1 = CourierBold
2 = CourierBoldOblique
3 = CourierOblique
4 = Helvetica
5 = HelveticaBold
6 = HelveticaBoldOblique
7 = HelveticaOblique
8 = TimesRoman
9 = TimesBold
10 = TimesItalic
11 = TimesBoldItalic
12 = Symbol
13 = ZapfDingbats

Return values

0 The font could not be added

Non-zero The ID of the font that was successfully added

AddSubsettedFont
Text, Fonts

Description

This function is used to embed a "subset" of a font. This means that only the font information for specified
characters is embedded, reducing the size of the document. This function also allows any Unicode character to
be embedded which means that characters from Chinese, Japanese, Korean and other languages can be used.

The newer AddTrueTypeSubsettedFont function provides more advanced font subsetting functionality.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddSubsettedFont(FontName: WideString;
 CharsetIndex: Integer; SubsetChars: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddSubsettedFont(
 FontName As String, CharsetIndex As Long,
 SubsetChars As String) As Long

 DLL

int DPLAddSubsettedFont(int InstanceID, wchar_t * FontName,
 int CharsetIndex, wchar_t * SubsetChars);

Parameters

FontName The name of the TrueType font to install. This can either be the name of the font as shown
in the Windows\Fonts folder (for example "Times New Roman Bold") or it can be the font
family name with an optional style specifier in square brackets (for example "Times New
Roman [BoldItalic]"). Possible optional specifiers are: [Bold], [Italic] or [BoldItalic].

CharsetIndex You must specify a character set containing the characters you want to subset:
1 = ANSI
2 = Default
3 = Symbol
4 = Shift JIS
5 = Hangeul
6 = GB2312
7 = Chinese Big 5
8 = OEM
9 = Johab
10 = Hebrew
11 = Arabic
12 = Greek
13 = Turkish
14 = Vietnamese
15 = Thai
16 = East Europe
17 = Russian
18 = Mac
19 = Baltic

SubsetChars A string containing the characters you would like to subset. Repeated characters are
ignored. A maximum of 255 characters can be placed in any font subset. Any Unicode
character can be embedded, but you must ensure that the character is available in the
specified character set.

Return values

0 The subsetted font could not be added or the CharSet parameter was out of range

Non-zero The FontID of the added font. This ID can be used with the SelectFont function to select
the font.

AddTextMarkupAnnotation
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

Adds a text markup annotation to the current page.
By default the annotation will consist of a single rectangular area matching the annotation's
bounding box. This area can be edited and other areas can be added using the
GetAnnotQuadCount, GetAnnotQuadPoints and SetAnnotQuadPoints functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddTextMarkupAnnotation(
 MarkupType: Integer; Left, Top, Width, Height: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddTextMarkupAnnotation(
 MarkupType As Long, Left As Double, Top As Double,
 Width As Double, Height As Double) As Long

 DLL

int DPLAddTextMarkupAnnotation(int InstanceID, int MarkupType,
 double Left, double Top, double Width, double Height);

Parameters

MarkupType 0 = Highlight
1 = Underline
2 = Squiggly
3 = Strike out

Left The horizontal co-ordinate of the left edge of the annotation bounding box

Top The vertical co-ordinate of the top edge of the annotation bounding box

Width The width of the annotation bounding box

Height The height of the annotation bounding box

Return values

0 The MarkupType parameter was not between 1 and 4.

1 The text markup annotation was added successfully.

AddToBuffer
Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 7.11.

Description

Adds a block of data to the buffer created with the CreateBuffer function.
This function can be called multiple times until the buffer is full. The return value is the number of
bytes remaining in the buffer.

Syntax

 DLL

int DPLAddToBuffer(int InstanceID, char * Buffer, char * Source,
 int SourceLength);

Parameters

Buffer A value returned from the CreateBuffer function

Source A pointer to the first byte of data to add

SourceLength The total number of bytes to copy from the source

AddToFileList
Miscellaneous functions

Description

Adds a file to a named file list. This file list can later be used with functions that will operate on all
the files in the list.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddToFileList(ListName,
 FileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddToFileList(
 ListName As String, FileName As String) As Long

 DLL

int DPLAddToFileList(int InstanceID, wchar_t * ListName,
 wchar_t * FileName);

Parameters

ListName The name of the file list to work with

FileName The file name to add to the list.

AddTrueTypeFont
Text, Fonts

Description

Adds a TrueType font to the document. The font must be installed on the system. If the font is not
embedded, then the reader of the PDF document must have the font installed on their system too.
If the font is embedded, then the reader does not need the font installed on their system.
Embedding a font makes the PDF file much larger. Some fonts are not licensed to be embedded.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddTrueTypeFont(FontName: WideString;
 Embed: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddTrueTypeFont(
 FontName As String, Embed As Long) As Long

 DLL

int DPLAddTrueTypeFont(int InstanceID, wchar_t * FontName, int Embed);

Parameters

FontName The name of the TrueType font to install. This can either be the name of the font
as shown in the Windows\Fonts folder (for example "Times New Roman") or it can
be the font family name with an optional style specifier in square brackets (for
example "Times New Roman [BoldItalic]").
Possible optional specifiers are: [Bold], [Italic] or [BoldItalic].
A codepage can also be specified (for example "Arial [Bold] {1250}") which allows
other encodings to be used. Possible code pages are:
{0} Direct mapping
{437} OEM_CHARSET
{850} OEM_CHARSET
{852} OEM_CHARSET
{874} THAI_CHARSET
{1250} EASTEUROPE_CHARSET
{1251} RUSSIAN_CHARSET
{1252} ANSI_CHARSET
{1253} GREEK_CHARSET
{1254} TURKISH_CHARSET
{1255} HEBREW_CHARSET
{1256} ARABIC_CHARSET
{1257} BALTIC_CHARSET
{1258} VIETNAMESE_CHARSET
{1361} JOHAB_CHARSET
Note: {932}, {936}, {949} and {950} are not supported from version 8.11

Embed Specifies whether to embed the font or not:
0 = Don't embed the font
1 = Embed the font

Return values

0 The font could not be added. This may mean that the font is not licensed to be
embedded, or that the font could not be found.

Non-zero The ID of the font that was successfully added. This ID can be used with the
SelectFont function to select the font

AddTrueTypeFontFromFile
Text, Fonts

Description

Embeds a TrueType, OpenType/TrueType or OpenType/CFF font into the document. The TrueType
font is specified by the file name and does not have to be installed as a system font.
This function is functionally identical to AddOpenTypeFontFromFile.
For TrueType and OpenType/TrueType fonts, a temporary file must be created during this process,
call SetTempPath to specify where this temporary file should be created.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddTrueTypeFontFromFile(
 FileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddTrueTypeFontFromFile(
 FileName As String) As Long

 DLL

int DPLAddTrueTypeFontFromFile(int InstanceID, wchar_t * FileName);

Parameters

FileName The full path and file name of the TrueType font file to embed.

Return values

0 The font could not be embedded

Non-zero The ID of the font that was successfully added. This ID can be used with the
SelectFont function to select the font

AddTrueTypeSubsettedFont
Text, Fonts

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Adds a subsetted TrueType font to the document.
For Options 0 and 1 the font subset is fixed and cannot be changed.
For Options 2 and 3 the font subset can be changed Similar to 0 but subset can be updated using
UpdateTrueTypeSubsettedFont

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddTrueTypeSubsettedFont(FontName,
 SubsetChars: WideString; Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddTrueTypeSubsettedFont(
 FontName As String, SubsetChars As String,
 Options As Long) As Long

 DLL

int DPLAddTrueTypeSubsettedFont(int InstanceID, wchar_t * FontName,
 wchar_t * SubsetChars, int Options);

Parameters

FontName The name of the TrueType font that must be subsetted.

SubsetChars A string containing the characters that should be included in the font subset.

Options 0=MS PlatformID, Unicode charset
1=Unicode PlatformID, "don't care" charset
2=Similar to 0 but subset can be updated using
UpdateTrueTypeSubsettedFont
3=Similar to 1 but subset can be updated using
UpdateTrueTypeSubsettedFont
4=Similar to 2 but subset is automatically updated
5=Similar to 3 but subset is automatically updated

Return values

0 The subsetted font could not be added or the CharSet parameter was out of
range

Non-zero The ID of the font that was successfully added. This ID can be used with the
SelectFont function to select the font

AddType1Font
Text, Fonts

Description

Adds a PostScript Type1 font to the document. The font must be supplied as two files, a .pfm and a
.pfb file. The full path to the .pfm file must be supplied. The font is embedded in the document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddType1Font(FileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddType1Font(
 FileName As String) As Long

 DLL

int DPLAddType1Font(int InstanceID, wchar_t * FileName);

Parameters

FileName The full path to the .pfm file. A .pfb file with the same name should exist in the
same directory as the .pfm file.

Return values

0 The font could not be added. Either the font files are in the wrong format, or they
cannot be found.

Non-zero The ID of the font that was successfully added. This ID can be used with the
SelectFont function to select the font

AddU3DAnnotationFromFile
Vector graphics, Image handling, Annotations and hotspot links, Page layout

Version history

This function was introduced in Quick PDF Library version 7.12.

Description

Adds an SVG file as an annotation to the current page. The SVG annotation will only be visible if
the PDF is viewed with Adobe Acrobat 7 or higher.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AddU3DAnnotationFromFile(Left, Top, Width,
 Height: Double; FileName: WideString; Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AddU3DAnnotationFromFile(
 Left As Double, Top As Double, Width As Double,
 Height As Double, FileName As String, Options As Long) As Long

 DLL

int DPLAddU3DAnnotationFromFile(int InstanceID, double Left, double Top,
 double Width, double Height, wchar_t * FileName, int Options);

Parameters

Left The horizontal co-ordinate of the left edge of the annotation rectangle

Top The vertical co-ordinate of the top edge of the annotation rectangle

Width The width of the annotation rectangle

Height The height of the annotation rectangle

FileName The path and name of the file containing the U3D model.

Options 0 = the 3D annotation is static
1 = the 3D annotation is interactive

AnalyseFile
Document properties

Description

Analyses a file on disk. The entire file is not loaded into memory so huge files can be examined.
Use the GetAnalysisInfo function to retrieve the individual analysis results. Call DeleteAnalysis
to remove the results from memory when you are finished.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AnalyseFile(InputFileName,
 Password: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AnalyseFile(
 InputFileName As String, Password As String) As Long

 DLL

int DPLAnalyseFile(int InstanceID, wchar_t * InputFileName,
 wchar_t * Password);

Parameters

InputFileName The path and name of the file to analyse.

Password The password to use when opening the file. This can be either the owner or
the user password. This parameter can be left blank if the file does not
require a password to be opened.

Return values

0 The file could not be analysed. Check the result of the LastErrorCode
function to determine the reason for the failure.

Non-zero The analysis results ID. Pass this to the GetAnalysisInfo function.

AnnotationCount
Annotations and hotspot links

Description

Returns the number of annotations on the selected page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AnnotationCount: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AnnotationCount As Long

 DLL

int DPLAnnotationCount(int InstanceID);

AnsiStringResultLength
Miscellaneous functions

Description

Returns the length of the most recent string returned from the library by all functions that return
8-bit strings.

Syntax

 DLL

int DPLAnsiStringResultLength(int InstanceID);

AppendSpace
Text, Page layout

Description

Moves the current text position horizontally by a percentage of the height of the text.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AppendSpace(RelativeSpace: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AppendSpace(
 RelativeSpace As Double) As Long

 DLL

int DPLAppendSpace(int InstanceID, double RelativeSpace);

Parameters

RelativeSpace A value of 1 moves the horizontal position by a value equal to the height of
the text at the present font size, also known as an EM space. A value of 0.5
moves the horizontal position by half the height of the text at the present font
size, also known as an EN space.

AppendTableColumns
Page layout

Version history

This function was introduced in Quick PDF Library version 7.16.

Description

Adds columns to the right of the specified table

Syntax

 Delphi

function TDebenuPDFLibrary1113.AppendTableColumns(TableID,
 NewColumnCount: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AppendTableColumns(
 TableID As Long, NewColumnCount As Long) As Long

 DLL

int DPLAppendTableColumns(int InstanceID, int TableID, int NewColumnCount);

Parameters

TableID A TableID returned by the CreateTable function

NewColumnCount The number of columns to add to the table

Return values

0 Columns could not be added. Check the TableID parameter and make
sure NewColumnCount is greater than or equal to 1.

Non-zero The total number of columns in the table after adding the new columns.

AppendTableRows
Page layout

Version history

This function was introduced in Quick PDF Library version 7.16.

Description

Adds rows to the bottom of the specified table.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AppendTableRows(TableID,
 NewRowCount: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AppendTableRows(TableID As Long,
 NewRowCount As Long) As Long

 DLL

int DPLAppendTableRows(int InstanceID, int TableID, int NewRowCount);

Parameters

TableID A TableID returned by the CreateTable function

NewRowCount The number of rows to add to the table

Return values

0 Rows could not be added. Check the TableID parameter and make sure
NewRowCount is greater than or equal to 1.

Non-zero The total number of rows in the table after adding the new rows.

AppendText
Text, Page layout

Description

Draws text immediately following text previously drawn with DrawText or AppendText.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AppendText(Text: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AppendText(
 Text As String) As Long

 DLL

int DPLAppendText(int InstanceID, wchar_t * Text);

Parameters

Text The text to append to the previously drawn text

AppendToFile
Document management

Version history

This function was introduced in Quick PDF Library version 10.11.

Description

Appends the changed objects to the specified file in an incremental update.
The file name specified should be the same file that was the source of the document in the earlier
call to LoadFromFile, LoadFromString or LoadFromStream.
Appending to a different file will result in a corrupt PDF.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AppendToFile(FileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AppendToFile(
 FileName As String) As Long

 DLL

int DPLAppendToFile(int InstanceID, wchar_t * FileName);

Parameters

FileName The name of the file to create

Return values

0 The incremental update could not be appended to the specified file

1 Success

AppendToString
Document management

Version history

This function was introduced in Quick PDF Library version 11.11.

Description

Appends the changed objects to a string in an incremental update.
The update must be made to the same input file from a previous call to LoadFromFile,
LoadFromString or LoadFromStream.
The AppendMode parameter can be used to change how the update section is returned. Either form
the original input or from the input set by the SetAppendInputFromString function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AppendToString(
 AppendMode: Integer): AnsiString;

 DLL

char * DPLAppendToString(int InstanceID, int AppendMode);

Parameters

AppendMode 0 = Return original source plus the update section
1 = Return just the update section
2 = Return input string set with SetAppendInputFromString plus the update
section

AppendToVariant
Document management

Version history

This function was introduced in Quick PDF Library version 11.11.

Description

Appends the changed objects to a variant byte array in an incremental update.
The update must be made to the same input file from a previous call to LoadFromFile,
LoadFromVariant or LoadFromStream.
The AppendMode parameter can be used to change how the update section is returned. Either form
the original input or from the input set by the SetAppendInputFromVariant function.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AppendToVariant(
 AppendMode As Long) As Variant

Parameters

AppendMode 0 = Return original source plus the update section
1 = Return just the update section
2 = Return input data set with SetAppendInputFromVariant plus the update
section

ApplyStyle
Text, Page layout

Description

Applies a style that was previously saved using the SaveStyle function. The style name is case
sensitive, it must exactly match the style name used with the SaveStyle function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ApplyStyle(StyleName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ApplyStyle(
 StyleName As String) As Long

 DLL

int DPLApplyStyle(int InstanceID, wchar_t * StyleName);

Parameters

StyleName The name to associate with the style. This name is case sensitive.

Return values

0 The specified StyleName could not be found

1 The style was applied successfully

AttachAnnotToForm
Form fields, Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 7.18.

Description

This functions attaches an annotation to the document form.
Use the IsAnnotFormField function to check if the specified annotation can be attached to the
document form and whether it is currently attached or not.

Syntax

 Delphi

function TDebenuPDFLibrary1113.AttachAnnotToForm(Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::AttachAnnotToForm(
 Index As Long) As Long

 DLL

int DPLAttachAnnotToForm(int InstanceID, int Index);

Parameters

Index The index of the annotation. The first annotation on the page has an index of 1.

Return values

0 The specified annotation could not be attached to the document form.

1 The specified annotation was attached successfully to the document form.

BalanceContentStream
Content Streams and Optional Content Groups, Page manipulation

Version history

This function was introduced in Quick PDF Library version 9.11.

Description

This function combines the content stream parts and surrounds the content stream with "save
graphics state" and "restore graphics state" operators.
If the page contains unbalanced "save graphics state" and "restore graphics state" commands this
function will add extra "restore graphics state" commands at the end of the page to balance the
graphics state stack.

Syntax

 Delphi

function TDebenuPDFLibrary1113.BalanceContentStream: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::BalanceContentStream As Long

 DLL

int DPLBalanceContentStream(int InstanceID);

BalancePageTree
Document management, Page properties

Version history

This function was introduced in Quick PDF Library version 9.15.

Description

Arranges the selected document's internal page structure into a balanced tree for faster random
access to pages in the document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.BalancePageTree(Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::BalancePageTree(
 Options As Long) As Long

 DLL

int DPLBalancePageTree(int InstanceID, int Options);

Parameters

Options Reserved for future use, should be set to zero.

Return values

0 The page tree could not be balanced

1 Success

BeginPageUpdate
Page layout

Version history

This function was introduced in Quick PDF Library version 7.12.

Description

For detailed page layouts this function can be called before a group of drawing commands. The
page layout commands will then be buffered until a matching call to the EndPageUpdate function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.BeginPageUpdate: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::BeginPageUpdate As Long

 DLL

int DPLBeginPageUpdate(int InstanceID);

CapturePage
Page manipulation

Description

This function "captures" a page. Once the page has been captured it can be drawn onto other
pages. This is useful for combining different pages or for placing more than one original page onto
another page (imposition). Once a page has been captured it is removed from the document. If
you would like the page to remain in the document you must create a blank page and draw the
captured page onto the blank page.
Also, because a document must have at least one page at all times it is not possible to capture a
page if it is the only page in the document. In this case, you must add a new blank page before the
existing page can be captured.
You cannot use CapturePage to move pages from one document to another new document so all
the required pages must be merged into a single document before calling CapturePage. The
CaptureID is just a pointer to a hidden page therefore memory does not need to be released.
The "media box" for the page is used as the bounding rectangle for the captured page. The
CapturePage function can be used in cases where the "crop box" for the page should be used
instead.

Syntax

 Delphi

function TDebenuPDFLibrary1113.CapturePage(Page: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::CapturePage(Page As Long) As Long

 DLL

int DPLCapturePage(int InstanceID, int Page);

Parameters

Page The page number to capture. The first page in the document is page 1.

Return values

0 The specified page does not exist, or it is the only page in the document

Non-zero The ID of the capture process. This ID must be supplied to the
DrawCapturedPage function.

CapturePageEx
Page manipulation

Description

This function "captures" a page. Once the page has been captured it can be drawn onto other
pages. This is useful for combining different pages or for placing more than one original page onto
another page (imposition). Once a page has been captured it is removed from the document. If
you would like the page to remain in the document you must create a blank page and draw the
captured page onto the blank page.
Also, because a document must have at least one page at all times it is not possible to capture a
page if it is the only page in the document. In this case, you must add a new blank page before the
existing page can be captured.
You cannot use CapturePage to move pages from one document to another new document so all
the required pages must be merged into a single document before calling CapturePage. The
CaptureID is just a pointer to a hidden page therefore memory does not need to be released.
The "media box" for the page is used as the bounding rectangle for the captured page. The
CapturePageEx function can be used in cases where the "crop box" for the page should be used
instead.

Syntax

 Delphi

function TDebenuPDFLibrary1113.CapturePageEx(Page,
 Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::CapturePageEx(Page As Long,
 Options As Long) As Long

 DLL

int DPLCapturePageEx(int InstanceID, int Page, int Options);

Parameters

Page The page number to capture. The first page in the document is page 1.

Options 0 = Use the page's media box for the bounding rectangle
1 = Use the page's crop box for the bounding rectangle if it has one, otherwise use
the media box
2 = Use the page's bleed box for the bounding rectangle if it has one, otherwise use
the crop box
3 = Use the page's trim box for the bounding rectangle if it has one, otherwise use
the crop box
4 = Use the page's art box for the bounding rectangle if it has one, otherwise use
the crop box

Return values

0 The specified page does not exist, or it is the only page in the document

Non-zero The ID of the capture process. This ID must be supplied to the
DrawCapturedPage function.

CharWidth
Text, Fonts

Description

Returns the width of a character for the selected font.
This width is returned as a ratio to the text size. For example, if this function returns 750 for a
certain character, then the width of the character for a 12 point font will be (750 / 1000) * 12.

Syntax

 Delphi

function TDebenuPDFLibrary1113.CharWidth(CharCode: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::CharWidth(
 CharCode As Long) As Long

 DLL

int DPLCharWidth(int InstanceID, int CharCode);

Parameters

CharCode The character to determine the width for. For example, 65 is the character A.

Return values

The width of the specified character. Divide this value by 1000, and multiply by the
text size in points to get the width of the character.

CheckFileCompliance
Document manipulation

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

This function tests a PDF document against various standards to determine compliance with the
standard.
This function is currently under development and currently runs only a small subset of possible
tests.

Syntax

 Delphi

function TDebenuPDFLibrary1113.CheckFileCompliance(InputFileName,
 Password: WideString; ComplianceTest, Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::CheckFileCompliance(
 InputFileName As String, Password As String,
 ComplianceTest As Long, Options As Long) As Long

 DLL

int DPLCheckFileCompliance(int InstanceID, wchar_t * InputFileName,
 wchar_t * Password, int ComplianceTest, int Options);

Parameters

InputFileName The file to check

Password The password to open the file. If there is no password an empty string
should be used.

ComplianceTest 1 = PDF/A compliance test

Options For PDF/A compliance test:
0 = Show all errors
1 = Stop after the first error

Return values

0 The file passed the compliance test.

Non-zero A StringListID that can be used with the GetStringListCount and
GetStringListItem functions.

CheckObjects
Miscellaneous functions

Description

Checks the file to ensure all objects are valid. This may take some time with large files and
consume large amounts of memory.

Syntax

 Delphi

function TDebenuPDFLibrary1113.CheckObjects: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::CheckObjects As Long

 DLL

int DPLCheckObjects(int InstanceID);

CheckPageAnnots
Annotations and hotspot links, Miscellaneous functions

Description

Checks all the annotations on the selected page and ensures that they are all valid. Invalid
annotations are removed from the page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.CheckPageAnnots: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::CheckPageAnnots As Long

 DLL

int DPLCheckPageAnnots(int InstanceID);

Return values

0 No annotations were found to be in an incorrect format

1 One or more annotations were not in the correct format and were unlinked from the
page

CheckPassword
Security and Signatures

Version history

This function was introduced in Quick PDF Library version 10..1.

Description

Determines if a password is a valid password for the selected document.
This is useful when the document has been opened with the user password but confirmation should
be obtained from the user before changing security settings.

Syntax

 Delphi

function TDebenuPDFLibrary1113.CheckPassword(
 Password: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::CheckPassword(
 Password As String) As Long

 DLL

int DPLCheckPassword(int InstanceID, wchar_t * Password);

Parameters

Password The password to check

Return values

0 The document is not encrypted or the supplied password is not a valid owner or
user password

1 Valid user password

2 Valid owner password

3 Valid owner and user password

ClearFileList
Miscellaneous functions

Description

Clears a named file list.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ClearFileList(
 ListName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ClearFileList(
 ListName As String) As Long

 DLL

int DPLClearFileList(int InstanceID, wchar_t * ListName);

Parameters

ListName The name of the file list to clear

Return values

0 The named list could not be found

1 The named list was cleared successfully

ClearImage
Image handling

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

Clears the specified image.
To prevent the corruption of existing links to the image it will not be deleted from the document.
The image will be converted into a 24-bit RGB format consisting of a single transparent pixel.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ClearImage(ImageID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ClearImage(
 ImageID As Long) As Long

 DLL

int DPLClearImage(int InstanceID, int ImageID);

Parameters

ImageID The ImageID of the image to be cleared

Return values

0 The specified ImageID was not valid

1 The image was cleared

ClearPageLabels
Page properties

Description

Removes all the page labels from the selected document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ClearPageLabels: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ClearPageLabels As Long

 DLL

int DPLClearPageLabels(int InstanceID);

ClearTextFormatting
Text

Description

Clears any formatting that has been applied. Subsequently drawn text will be drawn left aligned in
black with all highlighting, underlining, character spacing, word spacing, horizontal scaling and
vertical spacing removed.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ClearTextFormatting: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ClearTextFormatting As Long

 DLL

int DPLClearTextFormatting(int InstanceID);

CloneOutlineAction
Annotations and hotspot links, Outlines

Version history

This function was introduced in Quick PDF Library version 7.16.

Description

Calling this function will clone the action dictionary of the specified outline. This is useful when an
outline and an annotation share the same action dictionary and the actions must be set
individually.

Syntax

 Delphi

function TDebenuPDFLibrary1113.CloneOutlineAction(
 OutlineID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::CloneOutlineAction(
 OutlineID As Long) As Long

 DLL

int DPLCloneOutlineAction(int InstanceID, int OutlineID);

Parameters

OutlineID The ID of the outline as returned by the NewOutline function. Alternatively, use
the GetOutlineID function to get a valid outline ID.

ClonePages
Page manipulation

Description

Copies pages from the document multiple times, with only a negligible increase in file size. Note
that only the first "layer" of the page is cloned. Unless you specifically want to take part of the
page you should call CombineContentStreams for all the pages you want to clone before calling
this function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ClonePages(StartPage, EndPage,
 RepeatCount: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ClonePages(StartPage As Long,
 EndPage As Long, RepeatCount As Long) As Long

 DLL

int DPLClonePages(int InstanceID, int StartPage, int EndPage,
 int RepeatCount);

Parameters

StartPage The first page to clone

EndPage The last page to clone

RepeatCount The number of times to clone the pages

Return values

0 The parameters were out of range

1 The function was successful

CloseOutline
Outlines

Description

Collapses an outline item (bookmark).

Syntax

 Delphi

function TDebenuPDFLibrary1113.CloseOutline(OutlineID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::CloseOutline(
 OutlineID As Long) As Long

 DLL

int DPLCloseOutline(int InstanceID, int OutlineID);

Parameters

OutlineID The ID of the outline as returned by the NewOutline function. Alternatively, use
the GetOutlineID function to get a valid outline ID.

Return values

0 The Outline ID provided was invalid

1 The outline item was collapsed

ClosePath
Vector graphics, Path definition and drawing

Description

Closes the path defined by calls to StartPath, AddLineToPath, and AddCurveToPath. A line is
drawn from the last point to the first point.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ClosePath: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ClosePath As Long

 DLL

int DPLClosePath(int InstanceID);

CombineContentStreams
Content Streams and Optional Content Groups

Version history

This function was renamed in Quick PDF Library version 8.11.
The function name in earlier versions was CombineLayers.

Description

A page in a PDF document has one or more content stream parts that together contain all the PDF
page description commands for the page.
This function combines all the content stream parts of the selected page into a single content
stream.

Syntax

 Delphi

function TDebenuPDFLibrary1113.CombineContentStreams: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::CombineContentStreams As Long

 DLL

int DPLCombineContentStreams(int InstanceID);

Return values

0 The content stream could not be combined

1 The content stream was combined successfully

CompareOutlines
Outlines

Version history

This function was introduced in Quick PDF Library version 7.22.

Description

Compares two OutlineID values.

Syntax

 Delphi

function TDebenuPDFLibrary1113.CompareOutlines(FirstOutlineID,
 SecondOutlineID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::CompareOutlines(
 FirstOutlineID As Long, SecondOutlineID As Long) As Long

 DLL

int DPLCompareOutlines(int InstanceID, int FirstOutlineID,
 int SecondOutlineID);

Parameters

FirstOutlineID The first OutlineID to compare

SecondOutlineID The second OutlineID to compare

Return values

0 One or both of the OutlineID values were not valid or there is no
relationship between the two outlines.

1 The OutlineID values refer to the same outline item.

CompressContent
Document properties

Description

Compresses the content of the selected document. The Flate algorithm is used to compress the
content.

Syntax

 Delphi

function TDebenuPDFLibrary1113.CompressContent: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::CompressContent As Long

 DLL

int DPLCompressContent(int InstanceID);

Return values

0 The content could not be compressed

1 The content was compressed successfully

CompressFonts
Fonts, Document properties

Description

Specifies whether or not to compress TrueType, Packaged and Type1 fonts subsequently added to
the document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.CompressFonts(Compress: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::CompressFonts(
 Compress As Long) As Long

 DLL

int DPLCompressFonts(int InstanceID, int Compress);

Parameters

Compress 0 = Don't compress fonts
1 = Compress all subsequently added fonts

Return values

0 The Compress parameter was out of range

1 The font compression setting was changed successfully

CompressImages
Image handling, Document properties

Description

Specifies the compression to use for images added to the document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.CompressImages(Compress: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::CompressImages(
 Compress As Long) As Long

 DLL

int DPLCompressImages(int InstanceID, int Compress);

Parameters

Compress 0 = No compression
1 = Flate compression

Return values

0 The Compress parameter was not valid

1 The image compression was set successfully

CompressPage
Page properties

Description

This function is similar to the CompressContent function, however it only compresses the
selected page. Looping through all the pages using this function will have the same effect as
CompressContent, however it will be possible to provide feedback to the user.

Syntax

 Delphi

function TDebenuPDFLibrary1113.CompressPage: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::CompressPage As Long

 DLL

int DPLCompressPage(int InstanceID);

ContentStreamCount
Content Streams and Optional Content Groups

Version history

This function was renamed in Quick PDF Library version 8.11.
The function name in earlier versions was LayerCount.

Description

A page in a PDF document has one or more content stream parts that together contain all the PDF
page description commands for the page.
This function returns the total number of content stream parts for the selected page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ContentStreamCount: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ContentStreamCount As Long

 DLL

int DPLContentStreamCount(int InstanceID);

Return values

The number of content stream parts on the selected page

ContentStreamSafe
Content Streams and Optional Content Groups

Version history

This function was renamed in Quick PDF Library version 8.11.
The function name in earlier versions was LayerSafe.

Description

A page in a PDF document has one or more content stream parts that together contain all the PDF
page description commands for the page.
This function determines if the content stream part that was selected using the
SelectContentStream function was created by Quick PDF Library or not.
Only content stream parts created by Quick PDF Library should be considered "safe" to drawn on.
If a content stream part is not safe it would be best to combine all the content stream parts using
the CombineContentStreams function before drawing on the page to prevent later errors in the
document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ContentStreamSafe: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ContentStreamSafe As Long

 DLL

int DPLContentStreamSafe(int InstanceID);

Return values

0 The layer was not created by Quick PDF Library and care should be taken when
drawing onto this layer

1 The layer was created by Quick PDF Library and is safe to draw on

CopyPageRanges
Extraction, Page manipulation

Description

Use this function to copy one or more pages from one document to another.
The pages are copied in sequential order and duplicates are not allowed. To extract pages in a
different order to the source document or with duplicate pages the CopyPageRangesEx function
can be used.

Syntax

 Delphi

function TDebenuPDFLibrary1113.CopyPageRanges(DocumentID: Integer;
 RangeList: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::CopyPageRanges(
 DocumentID As Long, RangeList As String) As Long

 DLL

int DPLCopyPageRanges(int InstanceID, int DocumentID, wchar_t * RangeList);

Parameters

DocumentID The ID of the document to copy the pages from

RangeList The pages to extract, for example "10,15,18-20,25-35". Invalid characters and
duplicate page numbers in the string will be ignored. Reversed page ranges
such as "5-1" will be accepted. The list of pages will be sorted resulting in the
pages being extracted in numerical order.

Return values

0 The specified DocumentID was not valid or was the same as the selected
document, or the RangeList was invalid

1 The pages were successfully copied from the specified document to the selected
document

CopyPageRangesEx
Extraction, Page manipulation

Version history

This function was introduced in Quick PDF Library version 9.11.

Description

Use this function to copy one or more pages from one document to another. It is functionality
identical to the CopyPageRanges function but adds an option to allow the page list to contain
duplicate page numbers and a different page order to the original document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.CopyPageRangesEx(DocumentID: Integer;
 RangeList: WideString; Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::CopyPageRangesEx(
 DocumentID As Long, RangeList As String,
 Options As Long) As Long

 DLL

int DPLCopyPageRangesEx(int InstanceID, int DocumentID,
 wchar_t * RangeList, int Options);

Parameters

DocumentID The ID of the document to copy the pages from

RangeList The pages to extract, for example "10,15,18-20,25-35". Invalid characters in
the string will be ignored.

Options 0 = Identical behaviour to the CopyPageRanges function. The page list is
sorted and duplicate page numbers are ignored.
1 = Do not sort the page list and allow duplicate page numbers

Return values

0 The specified DocumentID was not valid or was the same as the selected
document, or the RangeList was invalid

1 The pages were successfully copied from the specified document to the selected
document

CreateBuffer
Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 7.11.

Description

Creates a buffer that can be used to send strings to Quick PDF Library DLL containing null
characters.
Once the buffer has been created, use the AddToBuffer function to add data to the buffer. The
data can be added to the buffer in one call, or chunks of data can be sent one at a time until the
buffer is full.
When you are finished with the buffer, call the ReleaseBuffer function to release it.

Syntax

 DLL

char * DPLCreateBuffer(int InstanceID, int BufferLength);

Parameters

BufferLength The size in bytes of the buffer that must be created

Return values

0 The BufferLength value was less than 1, or the InstanceID was invalid

Non-zero A PChar that can be passed as any string parameter to other functions

CreateLibrary
Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 7.11.

Description

Call this function to create an instance of Quick PDF Library in the DLL. The value returned is used
as the InstanceID parameter of all the other functions.
Call the ReleaseLibrary function to free the the instance when you are finished with it.

Syntax

 DLL

int DPLCreateLibrary(int InstanceID);

Return values

0 An instance of Quick PDF Library could not be created

Non-zero An InstanceID value that can be used with other functions

CreateNewObject
Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 7.26.

Description

Adds a new PDF object to the document. The contents of the object can be set using the
SetObjectFromString function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.CreateNewObject: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::CreateNewObject As Long

 DLL

int DPLCreateNewObject(int InstanceID);

Return values

Non-zero The object number of the newly created object

CreateTable
Page layout

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Creates a table with the specified number of rows and columns. Use the other table functions to set
up the table and then use DrawTableRows to draw the table onto the page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.CreateTable(RowCount,
 ColumnCount: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::CreateTable(RowCount As Long,
 ColumnCount As Long) As Long

 DLL

int DPLCreateTable(int InstanceID, int RowCount, int ColumnCount);

Parameters

RowCount The number of rows that the new table should have

ColumnCount The number of columns that the new table should have.

Return values

0 The table could not be created. Row and column count must be greater or
equal to 1.

Non-zero A TableID that can be used with the other table functions.

DAAppendFile
Document management, Direct access functionality

Description

Appends any changes made to a document originally opened using the DAOpenFile function. This
is a fast operation because only the changed objects must be added to the end of the original file.
The file is closed after this operation and the file handle will no longer be valid.
This function will not work if the source file was opened in read only mode or if the document was
loaded from a malformed file for example where whitespace was added to the start of the file. In
these cases the DASaveAsFile function should be used instead.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAAppendFile(FileHandle: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAAppendFile(
 FileHandle As Long) As Long

 DLL

int DPLDAAppendFile(int InstanceID, int FileHandle);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

Return values

0 The specified FileHandle was not valid

1 The changes to the file were appended successfully

2 The file was opened in read only mode and the update cannot be written. Use
DASaveAsFile instead.

3 The document was opened from a malformed file and an append operation is not
possible. See the DAShiftedHeader function.

DACapturePage
Direct access functionality, Page manipulation

Description

This function "captures" the specified page from a document originally opened with DAOpenFile.
The captured page can then be drawn onto any other page using the DADrawCapturedPage
function. This is useful for combining different pages or for placing more than one original page
onto another page (imposition).
Once a page has been captured it is removed from the document. If you would like the page to
remain in the document you must create a blank page and draw the captured page onto the blank
page.
The "media box" for the page is used as the bounding rectangle for the capture page. The
DACapturePageEx function can be used in cases where the "crop box" for the page should be
used instead.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DACapturePage(FileHandle,
 PageRef: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DACapturePage(
 FileHandle As Long, PageRef As Long) As Long

 DLL

int DPLDACapturePage(int InstanceID, int FileHandle, int PageRef);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

PageRef A page reference returned by the DAFindPage or DANewPage functions

Return values

0 The specified FileHandle or PageRef were not valid

Non-zero An ID that can be used with the DADrawCapturedPage function

DACapturePageEx
Direct access functionality, Page manipulation

Description

Captures the specified page from a document originally opened with DAOpenFile. The captured
page is hidden, but can then be drawn onto any other page using the DADrawCapturedPage
function. The "media box" for the page is used as the bounding rectangle for the capture page. The
DACapturePageEx function can be used in cases where the "crop box" for the page should be
used instead.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DACapturePageEx(FileHandle, PageRef,
 Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DACapturePageEx(
 FileHandle As Long, PageRef As Long, Options As Long) As Long

 DLL

int DPLDACapturePageEx(int InstanceID, int FileHandle, int PageRef,
 int Options);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

PageRef A page reference returned by the DAFindPage or DANewPage functions

Options 0 = Use the page's media box for the bounding rectangle
1 = Use the page's crop box for the bounding rectangle if it has one, otherwise
use the media box
2 = Use the page's bleed box for the bounding rectangle if it has one, otherwise
use the crop box
3 = Use the page's trim box for the bounding rectangle if it has one, otherwise
use the crop box
4 = Use the page's art box for the bounding rectangle if it has one, otherwise use
the crop box

Return values

0 The specified FileHandle or PageRef were not valid, or the specified page was the
only page in the document

Non-zero An ID that can be used with the DADrawCapturedPage function

DACloseFile
Direct access functionality

Description

Closes a file that was originally opened using the DAOpenFile function. Any changes made to the
file are lost. If you would like to keep your changes you must use either the DASaveAsFile
function or the DAAppendFile function before closing the file.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DACloseFile(FileHandle: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DACloseFile(
 FileHandle As Long) As Long

 DLL

int DPLDACloseFile(int InstanceID, int FileHandle);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

Return values

0 The specified FileHandle was not valid, the file may already have been closed

1 The file was closed successfully

DADrawCapturedPage
Direct access functionality, Page layout

Description

Draws a page originally captured using the DrawCapturedPage function onto the specified page.
The original page must have been captured from the same document (having the same
FileHandle).

Syntax

 Delphi

function TDebenuPDFLibrary1113.DADrawCapturedPage(FileHandle, DACaptureID,
 DestPageRef: Integer; PntLeft, PntBottom, PntWidth,
 PntHeight: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DADrawCapturedPage(
 FileHandle As Long, DACaptureID As Long, DestPageRef As Long,
 PntLeft As Double, PntBottom As Double, PntWidth As Double,
 PntHeight As Double) As Long

 DLL

int DPLDADrawCapturedPage(int InstanceID, int FileHandle, int DACaptureID,
 int DestPageRef, double PntLeft, double PntBottom,
 double PntWidth, double PntHeight);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

DACaptureID A capture ID returned by the DACapturePage function

DestPageRef A page reference returned by the DAFindPage or DANewPage functions

PntLeft The horizontal co-ordinate of the left edge of the destination rectangle,
measured in points from the left edge of the page

PntBottom The vertical co-ordinate of the bottom edge of the destination rectangle,
measured in points from the bottom edge of the page

PntWidth The width of the destination rectangle, measured in points

PntHeight The height of the destination rectangle, measured in points

Return values

0 The specified FileHandle, PageRef or DACaptureID were not valid

1 The captured page was drawn successfully

DADrawRotatedCapturedPage
Direct access functionality, Page layout

Version history

This function was introduced in Quick PDF Library version 7.23.

Description

Similar to the DADrawCapturedPage function but allows the captured page to be drawn at any
angle.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DADrawRotatedCapturedPage(FileHandle,
 DACaptureID, DestPageRef: Integer; PntLeft, PntBottom, PntWidth,
 PntHeight, Angle: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DADrawRotatedCapturedPage(
 FileHandle As Long, DACaptureID As Long, DestPageRef As Long,
 PntLeft As Double, PntBottom As Double, PntWidth As Double,
 PntHeight As Double, Angle As Double) As Long

 DLL

int DPLDADrawRotatedCapturedPage(int InstanceID, int FileHandle,
 int DACaptureID, int DestPageRef, double PntLeft,
 double PntBottom, double PntWidth, double PntHeight,
 double Angle);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

DACaptureID A capture ID returned by the DACapturePage function

DestPageRef A page reference returned by the DAFindPage or DANewPage functions

PntLeft The horizontal co-ordinate of the left edge of the destination rectangle,
measured in points from the left edge of the page

PntBottom The vertical co-ordinate of the bottom edge of the destination rectangle,
measured in points from the bottom edge of the page

PntWidth The width of the destination rectangle, measured in points

PntHeight The height of the destination rectangle, measured in points

Angle The angle to rotate the captured page by, measured anti-clockwise in degrees
from the baseline

Return values

0 The specified FileHandle, PageRef or DACaptureID were not valid

1 The captured page was drawn successfully

DAEmbedFileStreams
Document manipulation, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 7.24.

Description

Converts any stream object where the data is stored in an external file into a regular embedded
stream object.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAEmbedFileStreams(FileHandle: Integer;
 RootPath: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAEmbedFileStreams(
 FileHandle As Long, RootPath As String) As Long

 DLL

int DPLDAEmbedFileStreams(int InstanceID, int FileHandle,
 wchar_t * RootPath);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

RootPath The directory to use as the root for relative paths.

DAExtractPageText
Extraction, Direct access functionality, Page manipulation

Description

This function provides two different methods for extracting text from the selected page, and
presents the results in a variety of formats.
The DASetTextExtractionWordGap, DASetTextExtractionOptions and
DASetTextExtractionArea functions can be used to adjust the text extraction process.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAExtractPageText(FileHandle, PageRef,
 Options: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAExtractPageText(
 FileHandle As Long, PageRef As Long, Options As Long) As String

 DLL

wchar_t * DPLDAExtractPageText(int InstanceID, int FileHandle,
 int PageRef, int Options);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

PageRef A page reference returned by the DAFindPage or DANewPage functions

Options Using the standard text extraction algorithm:
0 = Extract text in human readable format
1 = Deprecated
2 = Return a CSV string including font, color, size and position of each piece of
text on the page
Using the more accurate but slower text extraction algorithm:
3 = Return a CSV string for each piece of text on the page with the following
format:
Font Name, Text Color, Text Size, X1, Y1, X2, Y2, X3, Y3, X4, Y4, Text
The co-ordinates are the four points bounding the text, measured using the units
set with the SetMeasurementUnits function and the origin set with the
SetOrigin function. Co-ordinate order is anti-clockwise with the bottom left
corner first.
4 = Similar to option 3, but individual words are returned, making searching for
words easier
5 = Similar to option 3 but character widths are output after each block of text
6 = Similar to option 4 but character widths are output after each line of text
7 = Extract text in human readable format with improved accuracy compared to
option 0
8 = Similar output format as option 0 but using the more accurate algorithm.
Returns unformatted lines.

DAExtractPageTextBlocks
Text, Extraction, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Similar to the DAExtractPageText function but the results are stored in a text block list rather
than returned as a CSV string.
Once the results are in the text block list, functions such as DAGetTextBlockCount,
DAGetTextBlockText and DAGetTextBlockColor can be used to retrieve the properties of each
block of text.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAExtractPageTextBlocks(FileHandle,
 PageRef, ExtractOptions: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAExtractPageTextBlocks(
 FileHandle As Long, PageRef As Long,
 ExtractOptions As Long) As Long

 DLL

int DPLDAExtractPageTextBlocks(int InstanceID, int FileHandle,
 int PageRef, int ExtractOptions);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

PageRef A page reference returned by the DAFindPage or DANewPage functions

ExtractOptions 3 = Normal extraction
4 = Split words

Return values

0 Text could not be extracted from the page

Non-zero A TextBlockListID value

DAFindPage
Direct access functionality

Description

Use this function to obtain a page reference for use with other Direct Access functions. This page
reference will remain constant even if other pages are added to or removed from the document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAFindPage(FileHandle,
 Page: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAFindPage(FileHandle As Long,
 Page As Long) As Long

 DLL

int DPLDAFindPage(int InstanceID, int FileHandle, int Page);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

Page The page number. The first page in the document has a page number of 1.

Return values

0 The specified FileHandle was not valid or the Page parameter was out of range

Non-zero An ID that can be used as the PageRef parameter for any of the direct access
functions

DAGetAnnotationCount
Direct access functionality

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

Returns the number of annotations on the specified page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetAnnotationCount(FileHandle,
 PageRef: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetAnnotationCount(
 FileHandle As Long, PageRef As Long) As Long

 DLL

int DPLDAGetAnnotationCount(int InstanceID, int FileHandle, int PageRef);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

PageRef A page reference returned by the DAFindPage or DANewPage functions

DAGetFormFieldCount
Form fields, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 7.16.

Description

Returns the number of form fields in the document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetFormFieldCount(
 FileHandle: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetFormFieldCount(
 FileHandle As Long) As Long

 DLL

int DPLDAGetFormFieldCount(int InstanceID, int FileHandle);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

DAGetFormFieldTitle
Form fields, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 7.16.

Description

Returns the title of the specified form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetFormFieldTitle(FileHandle,
 FieldIndex: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetFormFieldTitle(
 FileHandle As Long, FieldIndex As Long) As String

 DLL

wchar_t * DPLDAGetFormFieldTitle(int InstanceID, int FileHandle,
 int FieldIndex);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

FieldIndex The index of the form field to work with. The first form field has an index of 1.

DAGetFormFieldValue
Form fields, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 7.16.

Description

Returns the value of the specified form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetFormFieldValue(FileHandle,
 FieldIndex: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetFormFieldValue(
 FileHandle As Long, FieldIndex As Long) As String

 DLL

wchar_t * DPLDAGetFormFieldValue(int InstanceID, int FileHandle,
 int FieldIndex);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

FieldIndex The index of the form field to work with. The first form field has an index of 1.

DAGetImageDataToString
Image handling, Direct access functionality

Version history

This function was renamed in Quick PDF Library version 7.11.
The function name in earlier versions was DAGetImageDataAsString.

Description

Returns the image data of an image in an image list.
The format of the data depends on the type of the image. The DAGetImageIntProperty function
can be used to determine the image type.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetImageDataToString(FileHandle,
 ImageListID, ImageIndex: Integer): AnsiString;

 DLL

char * DPLDAGetImageDataToString(int InstanceID, int FileHandle,
 int ImageListID, int ImageIndex);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

ImageListID A value returned by the DAGetPageImageList function

ImageIndex The index of the image. The first image in the list has an index of 1. Use the
DAGetImageListCount function to determine the number of images in the
list.

DAGetImageDataToVariant
Image handling, Direct access functionality

Version history

This function was renamed in Quick PDF Library version 7.11.
The function name in earlier versions was DAGetImageDataAsVariant.

Description

Returns the image data of an image in an image list as a byte array variant.
The format of the data depends on the type of the image. The DAGetImageIntProperty function
can be used to determine the image type.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetImageDataToVariant(
 FileHandle As Long, ImageListID As Long,
 ImageIndex As Long) As Variant

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

ImageListID A value returned by the DAGetPageImageList function

ImageIndex The index of the image. The first image in the list has an index of 1. Use the
DAGetImageListCount function to determine the number of images in the
list.

DAGetImageDblProperty
Image handling, Direct access functionality

Description

Returns certain properties of an image in an image list.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetImageDblProperty(FileHandle,
 ImageListID, ImageIndex, PropertyID: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetImageDblProperty(
 FileHandle As Long, ImageListID As Long, ImageIndex As Long,
 PropertyID As Long) As Double

 DLL

double DPLDAGetImageDblProperty(int InstanceID, int FileHandle,
 int ImageListID, int ImageIndex, int PropertyID);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

ImageListID A value returned by the DAGetPageImageList function

ImageIndex The index of the image. The first image in the list has an index of 1. Use the
DAGetImageListCount function to determine the number of images in the
list.

PropertyID 501 = Horizontal co-ordinate of top-left corner
502 = Vertical co-ordinate of top-left corner
503 = Horizontal co-ordinate of top-right corner
504 = Vertical co-ordinate of top-right corner
505 = Horizontal co-ordinate of bottom-right corner
506 = Vertical co-ordinate of bottom-right corner
507 = Horizontal co-ordinate of bottom-left corner
508 = Vertical co-ordinate of bottom-left corner

DAGetImageIntProperty
Image handling, Direct access functionality

Description

Returns certain properties of an image in an image list.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetImageIntProperty(FileHandle,
 ImageListID, ImageIndex, PropertyID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetImageIntProperty(
 FileHandle As Long, ImageListID As Long, ImageIndex As Long,
 PropertyID As Long) As Long

 DLL

int DPLDAGetImageIntProperty(int InstanceID, int FileHandle,
 int ImageListID, int ImageIndex, int PropertyID);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

ImageListID A value returned by the DAGetPageImageList function

ImageIndex The index of the image. The first image in the list has an index of 1. Use the
DAGetImageListCount function to determine the number of images in the
list.

PropertyID 400 = Image type (see ImageType) for values
401 = Width in pixels
402 = Height in pixels
403 = Bits per pixel
404 = Color space type
405 = Image ID (will be 0 if it is an Inline image)

DAGetImageListCount
Image handling, Direct access functionality

Description

Returns the number of images in an image list.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetImageListCount(FileHandle,
 ImageListID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetImageListCount(
 FileHandle As Long, ImageListID As Long) As Long

 DLL

int DPLDAGetImageListCount(int InstanceID, int FileHandle,
 int ImageListID);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

ImageListID A value returned by the DAGetPageImageList function

DAGetInformation
Document properties, Direct access functionality

Description

Retrieves information from the document information section. This could be standard information
such as Author and Subject, or custom information.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetInformation(FileHandle: Integer;
 Key: WideString): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetInformation(
 FileHandle As Long, Key As String) As String

 DLL

wchar_t * DPLDAGetInformation(int InstanceID, int FileHandle,
 wchar_t * Key);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

Key For standard information use "Author", "Title", "Subject", "Keywords", "Creator",
or "Producer". For custom information any other string can be used.

DAGetObjectCount
Miscellaneous functions, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 7.16.

Description

Returns the number of raw PDF objects in the document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetObjectCount(
 FileHandle: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetObjectCount(
 FileHandle As Long) As Long

 DLL

int DPLDAGetObjectCount(int InstanceID, int FileHandle);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

DAGetObjectToString
Miscellaneous functions, Direct access functionality

Version history

This function was renamed in Quick PDF Library version 8.11.
The function name in earlier versions was DAGetObjectSource.

Description

Returns the raw PDF object data for the specified object number. This is for advanced use only.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetObjectToString(FileHandle,
 ObjectNumber: Integer): AnsiString;

 DLL

char * DPLDAGetObjectToString(int InstanceID, int FileHandle,
 int ObjectNumber);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

ObjectNumber The number of the object to retrieve. The first object is numbered 1 and the
last object has an object number equal to the result of the GetObjectCount
function.

DAGetObjectToVariant
Miscellaneous functions, Direct access functionality

Version history

This function was renamed in Quick PDF Library version 8.11.
The function name in earlier versions was DAGetObjectSource.

Description

Returns the raw PDF object data for the specified object number as a variant byte array. This is for
advanced use only.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetObjectToVariant(
 FileHandle As Long, ObjectNumber As Long) As Variant

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

ObjectNumber The number of the object to retrieve. The first object is numbered 1 and the
last object has an object number equal to the result of the GetObjectCount
function.

DAGetPageBox
Direct access functionality, Page properties

Version history

This function was introduced in Quick PDF Library version 7.23.

Description

Returns a dimension of the specified page boundary rectangle.
Returned values are points measured from the bottom left corner of the page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetPageBox(FileHandle, PageRef, BoxIndex,
 Dimension: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetPageBox(FileHandle As Long,
 PageRef As Long, BoxIndex As Long, Dimension As Long) As Double

 DLL

double DPLDAGetPageBox(int InstanceID, int FileHandle, int PageRef,
 int BoxIndex, int Dimension);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

PageRef A page reference returned by the DAFindPage or DANewPage functions

BoxIndex 1 = MediaBox
2 = CropBox
3 = BleedBox
4 = TrimBox
5 = ArtBox

Dimension 0 = Left
1 = Top
2 = Width
3 = Height
4 = Right
5 = Bottom

DAGetPageContentToString
Direct access functionality, Page properties

Version history

This function was renamed in Quick PDF Library version 8.11.
The function name in earlier versions was DAGetPageContent.

Description

Retrieves the graphics commands and operators that make up the specified page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetPageContentToString(FileHandle,
 PageRef: Integer): AnsiString;

 DLL

char * DPLDAGetPageContentToString(int InstanceID, int FileHandle,
 int PageRef);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

PageRef A page reference returned by the DAFindPage or DANewPage functions

DAGetPageContentToVariant
Direct access functionality, Page properties

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Retrieves the graphics commands and operators that make up the specified page as a variant byte
array.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetPageContentToVariant(
 FileHandle As Long, PageRef As Long) As Variant

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

PageRef A page reference returned by the DAFindPage or DANewPage functions

DAGetPageCount
Document properties, Direct access functionality

Description

Returns the number of pages in a document opened with the DAOpenFile function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetPageCount(
 FileHandle: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetPageCount(
 FileHandle As Long) As Long

 DLL

int DPLDAGetPageCount(int InstanceID, int FileHandle);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

Return values

0 The specified FileHandle was not valid

Non-zero The number of pages in the document

DAGetPageHeight
Direct access functionality, Page properties

Description

Returns the height of the specified page in a document opened with the DAOpenFile function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetPageHeight(FileHandle,
 PageRef: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetPageHeight(
 FileHandle As Long, PageRef As Long) As Double

 DLL

double DPLDAGetPageHeight(int InstanceID, int FileHandle, int PageRef);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

PageRef A page reference returned by the DAFindPage or DANewPage functions

DAGetPageImageList
Image handling, Direct access functionality, Page properties

Description

This function finds all the images on the selected page and returns an ImageListID that can be
used with the DAGetImageListCount, DAGetImageListItemIntProperty,
DAGetImageListItemDblProperty, DAGetImageListItemDataToString,
DAGetImageListItemDataToVariant and DASaveImageListItemDataToFile functions.

As of version 10.13 will include Inline images but the ImageID will be 0 for any inline image which
means that any inline images cannot used with ReplaceImage or ClearImage functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetPageImageList(FileHandle,
 PageRef: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetPageImageList(
 FileHandle As Long, PageRef As Long) As Long

 DLL

int DPLDAGetPageImageList(int InstanceID, int FileHandle, int PageRef);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

PageRef A page reference returned by the DAFindPage function

Return values

0 The FileHandle or PageRef parameters were invalid

Non-zero An ImageListID value that can be used with the other direct access image list
functions

DAGetPageWidth
Direct access functionality, Page properties

Description

Returns the width of the specified page in a document opened with the DAOpenFile function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetPageWidth(FileHandle,
 PageRef: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetPageWidth(
 FileHandle As Long, PageRef As Long) As Double

 DLL

double DPLDAGetPageWidth(int InstanceID, int FileHandle, int PageRef);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

PageRef A page reference returned by the DAFindPage or DANewPage functions

DAGetTextBlockAsString
Text, Extraction, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 11.12.

Description

Returns all the text block entries for a single text block as a formatted string delimited by CR/LF

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetTextBlockAsString(TextBlockListID,
 Index: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetTextBlockAsString(
 TextBlockListID As Long, Index As Long) As String

 DLL

wchar_t * DPLDAGetTextBlockAsString(int InstanceID, int TextBlockListID,
 int Index);

Parameters

TextBlockListID A value returned by the ExtractPageTextBlocks function

Index The index of the text block. The first text block in the list has an index of 1.

Return values

TextBlockAsString A formatted string of all available text block fields where each line is
separate by a CR/LF. Here is a sample output string

CNT:4
FNT:Arial
SIZ:12
CLR:#000000
TX1:20
TY1:769.516
TX2:48.02
TY2:769.516
TX3:48.02
TY3:780.616
TX4:20
TY4:780.616
WID:8.004,6.672,6.672,6.672
TXT:Page

where CNT = char count, FNT = fontname, SIZ = Fontsize, CLR = color,
TXx = X value for bounds point x, TYy = Y value for bounds y, WID =
comma separated character widths, TXT = extracted text.

DAGetTextBlockBound
Text, Extraction, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Returns one of the bounds of the specified text block.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetTextBlockBound(TextBlockListID, Index,
 BoundIndex: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetTextBlockBound(
 TextBlockListID As Long, Index As Long,
 BoundIndex As Long) As Double

 DLL

double DPLDAGetTextBlockBound(int InstanceID, int TextBlockListID,
 int Index, int BoundIndex);

Parameters

TextBlockListID A value returned by the DAExtractPageTextBlocks or
ExtractFilePageTextBlocks functions

Index The index of the text block. The first text block in the list has an index of 1.

BoundIndex 1 = Bottom left horizontal coordinate
2 = Bottom left vertical coordinate
3 = Bottom right horizontal coordinate
4 = Bottom right vertical coordinate
5 = Top right horizontal coordinate
6 = Top right vertical coordinate
7 = Top left horizontal coordinate
8 = Top left vertical coordinate

DAGetTextBlockCharWidth
Text, Fonts, Extraction, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Returns the width of a particular character within the specified text block.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetTextBlockCharWidth(TextBlockListID,
 Index, CharIndex: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetTextBlockCharWidth(
 TextBlockListID As Long, Index As Long,
 CharIndex As Long) As Double

 DLL

double DPLDAGetTextBlockCharWidth(int InstanceID, int TextBlockListID,
 int Index, int CharIndex);

Parameters

TextBlockListID A value returned by the DAExtractPageTextBlocks or
ExtractFilePageTextBlocks functions

Index The index of the text block. The first text block in the list has an index of 1.

CharIndex The index of the character to retrieve the width of. The first character has
an index of 1.

DAGetTextBlockColor
Text, Extraction, Color, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Returns one component of the color of the text in the specified text block.
The color component value is returned as a value between 0 and 1.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetTextBlockColor(TextBlockListID, Index,
 ColorComponent: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetTextBlockColor(
 TextBlockListID As Long, Index As Long,
 ColorComponent As Long) As Double

 DLL

double DPLDAGetTextBlockColor(int InstanceID, int TextBlockListID,
 int Index, int ColorComponent);

Parameters

TextBlockListID A value returned by the DAExtractPageTextBlocks or
ExtractFilePageTextBlocks functions

Index The index of the text block. The first text block in the list has an index of 1.

ColorComponent For RGB:
1 = Red
2 = Green
3 = Blue
For CMYK:
1 = Cyan
2 = Magenta
3 = Yellow
4 = Black

DAGetTextBlockColorType
Text, Extraction, Color, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Returns the type of color of the text in the specified text block.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetTextBlockColorType(TextBlockListID,
 Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetTextBlockColorType(
 TextBlockListID As Long, Index As Long) As Long

 DLL

int DPLDAGetTextBlockColorType(int InstanceID, int TextBlockListID,
 int Index);

Parameters

TextBlockListID A value returned by the DAExtractPageTextBlocks or
ExtractFilePageTextBlocks functions

Index The index of the text block. The first text block in the list has an index of 1.

Return values

3 RGB

4 CMYK

DAGetTextBlockCount
Text, Extraction, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Returns the number of text blocks in the specified text block list.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetTextBlockCount(
 TextBlockListID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetTextBlockCount(
 TextBlockListID As Long) As Long

 DLL

int DPLDAGetTextBlockCount(int InstanceID, int TextBlockListID);

Parameters

TextBlockListID A value returned by the DAExtractPageTextBlocks or
ExtractFilePageTextBlocks functions

DAGetTextBlockFontName
Text, Fonts, Extraction, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Returns the font name of the text in the specified text block.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetTextBlockFontName(TextBlockListID,
 Index: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetTextBlockFontName(
 TextBlockListID As Long, Index As Long) As String

 DLL

wchar_t * DPLDAGetTextBlockFontName(int InstanceID, int TextBlockListID,
 int Index);

Parameters

TextBlockListID A value returned by the DAExtractPageTextBlocks or
ExtractFilePageTextBlocks functions

Index The index of the text block. The first text block in the list has an index of 1.

DAGetTextBlockFontSize
Text, Fonts, Extraction, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Returns the font size of the text in the specified text block.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetTextBlockFontSize(TextBlockListID,
 Index: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetTextBlockFontSize(
 TextBlockListID As Long, Index As Long) As Double

 DLL

double DPLDAGetTextBlockFontSize(int InstanceID, int TextBlockListID,
 int Index);

Parameters

TextBlockListID A value returned by the DAExtractPageTextBlocks or
ExtractFilePageTextBlocks functions

Index The index of the text block. The first text block in the list has an index of 1.

DAGetTextBlockText
Text, Extraction, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Returns the text in the specified text block.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAGetTextBlockText(TextBlockListID,
 Index: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAGetTextBlockText(
 TextBlockListID As Long, Index As Long) As String

 DLL

wchar_t * DPLDAGetTextBlockText(int InstanceID, int TextBlockListID,
 int Index);

Parameters

TextBlockListID A value returned by the DAExtractPageTextBlocks or
ExtractFilePageTextBlocks functions

Index The index of the text block. The first text block in the list has an index of 1.

DAHasPageBox
Direct access functionality, Page properties

Version history

This function was introduced in Quick PDF Library version 7.23.

Description

Determines if a page has a particular page boundary rectangle.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAHasPageBox(FileHandle, PageRef,
 BoxIndex: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAHasPageBox(FileHandle As Long,
 PageRef As Long, BoxIndex As Long) As Long

 DLL

int DPLDAHasPageBox(int InstanceID, int FileHandle, int PageRef,
 int BoxIndex);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

PageRef A page reference returned by the DAFindPage or DANewPage functions

BoxIndex 1 = MediaBox
2 = CropBox
3 = BleedBox
4 = TrimBox
5 = ArtBox

Return values

0 The page does not have the specified page boundary rectangle

1 The page has the specified page boundary rectangle

DAHidePage
Direct access functionality, Page manipulation

Description

Hides the specified page from a document originally opened with DAOpenFile. The content of the
page is still in the document, but the page will not be visible.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAHidePage(FileHandle,
 PageRef: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAHidePage(FileHandle As Long,
 PageRef As Long) As Long

 DLL

int DPLDAHidePage(int InstanceID, int FileHandle, int PageRef);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

PageRef A page reference returned by the DAFindPage or DANewPage functions

Return values

0 The specified FileHandle or PageRef were not valid

1 The page was hidden successfully

DAMovePage
Direct access functionality, Page manipulation

Description

Moves a page to a new location in the document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAMovePage(FileHandle, PageRef,
 TargetPageRef, Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAMovePage(FileHandle As Long,
 PageRef As Long, TargetPageRef As Long,
 Options As Long) As Long

 DLL

int DPLDAMovePage(int InstanceID, int FileHandle, int PageRef,
 int TargetPageRef, int Options);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

PageRef A page reference returned by the DAFindPage or DANewPage functions.
This is the page that will be moved.

TargetPageRef A page reference returned by the DAFindPage or DANewPage functions.
The page will be moved before or after this page.

Options 0 = Move before target page
1 = Move after target page

Return values

0 The page could not be moved. Check that the FileHandle, PageRef and
TargetPageRef values are correct.

1 The page was moved successfully

DANewPage
Direct access functionality, Page manipulation

Description

Adds a new blank page to the end of the document. The page will have a standard size of 612x792
points.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DANewPage(FileHandle: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DANewPage(
 FileHandle As Long) As Long

 DLL

int DPLDANewPage(int InstanceID, int FileHandle);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

Return values

0 The specified FileHandle was not valid

Non-zero An ID that can be used as the PageRef parameter for any of the direct access
functions

DANewPages
Direct access functionality, Page manipulation

Description

Adds a number of new pages to the end of the document. All new pages have a standard size of
612x792 points.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DANewPages(FileHandle,
 PageCount: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DANewPages(FileHandle As Long,
 PageCount As Long) As Long

 DLL

int DPLDANewPages(int InstanceID, int FileHandle, int PageCount);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

PageCount The number of pages to add to the document

Return values

0 The specified FileHandle was not valid

Non-zero The total number of pages in the document after the new pages were added

DANormalizePage
Text, Document manipulation, Direct access functionality, Page manipulation

Version history

This function was introduced in Quick PDF Library version 11.11.

Description

Moves and/or rotates the contents of the page so that subsequent drawing operations are at the
expected position on the page. All the page boundary boxes are adjusted to the physical size of the
page and the page's rotation attribute is reset to zero.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DANormalizePage(FileHandle, PageRef,
 NormalizeOptions: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DANormalizePage(
 FileHandle As Long, PageRef As Long,
 NormalizeOptions As Long) As Long

 DLL

int DPLDANormalizePage(int InstanceID, int FileHandle, int PageRef,
 int NormalizeOptions);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

PageRef A page reference returned by the DAFindPage or DANewPage functions

NormalizeOptions 0 = Standard normalization

DAOpenFile
Document management, Direct access functionality

Description

Opens a file in direct access mode. This allows large files to be processed. The file will not be
accessible by other processes until the file is closed using the one of the following functions:
DACloseFile, DAAppendFile or DASaveAsFile. Read only files can be opened and all other direct
access functions will work but DAAppendFile will not work as the file cannot be written.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAOpenFile(InputFileName,
 Password: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAOpenFile(
 InputFileName As String, Password As String) As Long

 DLL

int DPLDAOpenFile(int InstanceID, wchar_t * InputFileName,
 wchar_t * Password);

Parameters

InputFileName The path and name of the document to open in direct access mode.

Password The password to use when opening the document. This can be the owner or
user password. If the user password is used certain functionality may be
restricted depending on the permissions of the document.

Return values

0 The file could not be opened. Use the LastErrorCode function to determine
the cause of the failure.

Non-zero A FileHandle that can be used with the other Direct Access functions

DAOpenFileReadOnly
Document management, Direct access functionality

Description

Opens a file in direct access mode. This allows large files to be processed. The file is opened with
read only access so other processes will also be able to open the file in read only mode.
DASaveAsFile should be used to save any changes to a new file as DAAppendFile cannot update
read only files.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAOpenFileReadOnly(InputFileName,
 Password: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAOpenFileReadOnly(
 InputFileName As String, Password As String) As Long

 DLL

int DPLDAOpenFileReadOnly(int InstanceID, wchar_t * InputFileName,
 wchar_t * Password);

Parameters

InputFileName The path and name of the document to open in direct access mode with read
only access.

Password The password to use when opening the document. This can be the owner or
user password. If the user password is used certain functionality may be
restricted depending on the permissions of the document.

Return values

0 The file could not be opened. Use the LastErrorCode function to determine
the cause of the failure.

Non-zero A FileHandle that can be used with the other Direct Access functions

DAOpenFromStream
Document management, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

Opens a PDF stored inside a Delphi TStream object in direct access mode.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAOpenFromStream(InStream: TStream;
 Password: WideString): Integer;

Parameters

InStream The TStream object containing the PDF document data

Password The password to use when opening the document. This can be the owner or user
password. If the user password is used certain functionality may be restricted
depending on the permissions of the document.

Return values

0 The file could not be opened from the stream

Non-zero A FileHandle that can be used with the other Direct Access functions

DAPageRotation
Direct access functionality, Page properties

Description

Returns the rotation of the specified page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAPageRotation(FileHandle,
 PageRef: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAPageRotation(
 FileHandle As Long, PageRef As Long) As Long

 DLL

int DPLDAPageRotation(int InstanceID, int FileHandle, int PageRef);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

PageRef A page reference returned by the DAFindPage or DANewPage functions

DAReleaseImageList
Image handling, Direct access functionality, Page properties

Version history

This function was introduced in Quick PDF Library version 8.15.

Description

Releases the specified image list including all the image data extracted from the images in the list.
Releasing the image list does not affect the original images.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAReleaseImageList(FileHandle,
 ImageListID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAReleaseImageList(
 FileHandle As Long, ImageListID As Long) As Long

 DLL

int DPLDAReleaseImageList(int InstanceID, int FileHandle, int ImageListID);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

ImageListID A value returned by the DAGetPageImageList function

Return values

0 The image list could not be released. The ImageListID parameter might be
invalid or does not refer to an image list within the specified document.

1 The image list was released successfully.

DAReleaseTextBlocks
Direct access functionality

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Releases the memory used by a text block list.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAReleaseTextBlocks(
 TextBlockListID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAReleaseTextBlocks(
 TextBlockListID As Long) As Long

 DLL

int DPLDAReleaseTextBlocks(int InstanceID, int TextBlockListID);

Parameters

TextBlockListID A value returned by the DAExtractPageTextBlocks or
ExtractFilePageTextBlocks functions

DARemoveUsageRights
Document manipulation, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 7.25.

Description

Removes any usage rights from the document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DARemoveUsageRights(
 FileHandle: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DARemoveUsageRights(
 FileHandle As Long) As Long

 DLL

int DPLDARemoveUsageRights(int InstanceID, int FileHandle);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

Return values

0 The document did not have any usage rights

1 Success

DARenderPageToDC
Direct access functionality, Rendering and printing

Version history

This function was introduced in Quick PDF Library version 7.12.

Description

Renders the specified page from the specified document directly onto a graphics surface.
On Windows the target surface is a Device Context handle (DC).
By default rendering uses the GDI+ system which is available by default in Windows XP and later.
It is also possible to render using Cairo, use the SetCairoFileName and SelectRenderer
functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DARenderPageToDC(FileHandle,
 PageRef: Integer; DPI: Double; DC: HDC): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DARenderPageToDC(
 FileHandle As Long, PageRef As Long, DPI As Double,
 DC As Long) As Long

 DLL

int DPLDARenderPageToDC(int InstanceID, int FileHandle, int PageRef,
 double DPI, HDC DC);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

PageRef A page reference returned by the DAFindPage or DANewPage functions

DPI The DPI to use when rendering the page

DC The device context handle

Return values

0 The page could not be rendered

1 The page was rendered successfully

DARenderPageToFile
Direct access functionality, Rendering and printing

Description

Renders the specified page from the specified document to an image and saves the image data as
a file on disk.
By default rendering uses the GDI+ system which is available by default in Windows XP and later.
Option 10, TIFF (G4) output, is only available on Windows Vista and Windows Server 2008 and
later.
It is also possible to render using Cairo, use the SetCairoFileName and SelectRenderer
functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DARenderPageToFile(FileHandle, PageRef,
 Options: Integer; DPI: Double; FileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DARenderPageToFile(
 FileHandle As Long, PageRef As Long, Options As Long,
 DPI As Double, FileName As String) As Long

 DLL

int DPLDARenderPageToFile(int InstanceID, int FileHandle, int PageRef,
 int Options, double DPI, wchar_t * FileName);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

PageRef A page reference returned by the DAFindPage or DANewPage functions

Options 0 = BMP output
1 = JPEG output
2 = WMF output
3 = EMF output
4 = EPS output
5 = PNG output
6 = GIF output
7 = TIFF output
8 = EMF+ output
9 = HTML5 output
10 = G4 TIFF output

DPI The DPI to use when rendering the page. Values over 300 will cause excessive
memory usage.

FileName The path and file name of the file to create to store the rendered page image data
in.

Return values

0 The page could not be rendered. Check the value of the FileHandle and PageRef
parameters.

1 The page was rendered correctly and the image file was saved to disk

2 The file could not be written to disk

DARenderPageToStream
Direct access functionality, Rendering and printing

Description

This function is only available in the Delphi edition.
It renders the specified page from the specified document to an image and returns the image data
in the supplied TStream.
By default rendering uses the GDI+ system which is available by default in Windows XP and later.
Option 10, TIFF (G4) output, is only available on Windows Vista and Windows Server 2008 and
later.
It is also possible to render using Cairo, use the SetCairoFileName and SelectRenderer
functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DARenderPageToStream(FileHandle, PageRef,
 Options: Integer; DPI: Double; Target: TStream): Integer;

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

PageRef A page reference returned by the DAFindPage or DANewPage functions

Options 0 = BMP output
1 = JPEG output
2 = WMF output
3 = EMF output
4 = EPS output
5 = PNG output
6 = GIF output
7 = TIFF output
8 = EMF+ output
9 = HTML5 output
10 = G4 TIFF output

DPI The DPI to use when rendering the page. Values over 300 will cause excessive
memory usage.

Target The stream to place the rendered page into

Return values

0 The page could not be rendered. Check that the FileHandle and PageRef
parameters contain valid values.

1 The page was rendered and the image data was put into the stream

DARenderPageToString
Direct access functionality, Rendering and printing

Description

It renders the specified page from the specified document to an image and returns the image data
as a string.
By default rendering uses the GDI+ system which is available by default in Windows XP and later.
Option 10, TIFF (G4) output, is only available on Windows Vista and Windows Server 2008 and
later.
It is also possible to render using Cairo, use the SetCairoFileName and SelectRenderer
functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DARenderPageToString(FileHandle, PageRef,
 Options: Integer; DPI: Double): AnsiString;

 DLL

char * DPLDARenderPageToString(int InstanceID, int FileHandle,
 int PageRef, int Options, double DPI);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

PageRef A page reference returned by the DAFindPage or DANewPage functions

Options 0 = BMP output
1 = JPEG output
2 = WMF output
3 = EMF output
4 = EPS output
5 = PNG output
6 = GIF output
7 = TIFF output
8 = EMF+ output
9 = HTML5 output
10 = G4 TIFF output

DPI The DPI to use when rendering the page. Values over 300 will cause excessive
memory usage.

DARenderPageToVariant
Direct access functionality, Rendering and printing

Version history

This function was introduced in Quick PDF Library version 7.11.

Description

Renders the specified page from the specified document to an image and returns the image data as
a byte array variant.
By default rendering uses the GDI+ system which is available by default in Windows XP and later.
Option 10, TIFF (G4) output, is only available on Windows Vista and Windows Server 2008 and
later.
It is also possible to render using Cairo, use the SetCairoFileName and SelectRenderer
functions.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DARenderPageToVariant(
 FileHandle As Long, PageRef As Long, Options As Long,
 DPI As Double) As Variant

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

PageRef A page reference returned by the DAFindPage or DANewPage functions

Options 0 = BMP output
1 = JPEG output
2 = WMF output
3 = EMF output
4 = EPS output
5 = PNG output
6 = GIF output
7 = TIFF output
8 = EMF+ output
9 = HTML5 output
10 = G4 TIFF output

DPI The DPI to use when rendering the page. Values over 300 will cause excessive
memory usage.

DARotatePage
Direct access functionality, Page properties

Description

Sets the rotation of the selected page. The rotation is only applicable to the viewed page, the
co-ordinate system rotates with the page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DARotatePage(FileHandle, PageRef, Angle,
 Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DARotatePage(FileHandle As Long,
 PageRef As Long, Angle As Long, Options As Long) As Long

 DLL

int DPLDARotatePage(int InstanceID, int FileHandle, int PageRef,
 int Angle, int Options);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

PageRef A page reference returned by the DAFindPage or DANewPage functions

Angle The clockwise angle in degrees to rotate the page by, must be a multiple of 90

Options Reserved for future use. Must be set to 0.

Return values

0 The page rotation could not be set. Check that the FileHandle and PageRef
parameters are correct, and ensure that the Angle parameter is a multiple of 90.

1 The page rotation was set successfully

DASaveAsFile
Document management, Direct access functionality

Description

Rewrites the entire file, including all changes, to a new file. This operation may take some time
with large files or files with many objects. The original file is closed after this operation and the file
handle will no longer be valid. The original file cannot be overwritten. Use DAAppendFile if you
want to append changes to original file.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DASaveAsFile(FileHandle: Integer;
 OutputFileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DASaveAsFile(FileHandle As Long,
 OutputFileName As String) As Long

 DLL

int DPLDASaveAsFile(int InstanceID, int FileHandle,
 wchar_t * OutputFileName);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

OutputFileName The path and name of the new document to create.

Return values

0 The new file could not be created

1 The document was saved to the new file successfully

DASaveCopyToStream
Document management, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 10.11.

Description

Similar to DASaveToStream but the input file is not closed.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DASaveCopyToStream(FileHandle: Integer;
 OutStream: TStream): Integer;

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

OutStream The Delphi TStream object to save the file into

Return values

0 The file could not be saved to the stream

1 The file was successfully saved to the stream

DASaveImageDataToFile
Image handling, Direct access functionality

Description

Saves an image in an image list to a file on disk. The type of image file depends on the type of the
image. The DAGetImageIntProperty function can be used to determine the image type.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DASaveImageDataToFile(FileHandle,
 ImageListID, ImageIndex: Integer; ImageFileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DASaveImageDataToFile(
 FileHandle As Long, ImageListID As Long, ImageIndex As Long,
 ImageFileName As String) As Long

 DLL

int DPLDASaveImageDataToFile(int InstanceID, int FileHandle,
 int ImageListID, int ImageIndex, wchar_t * ImageFileName);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

ImageListID A value returned by the DAGetPageImageList function

ImageIndex The index of the image. The first image in the list has an index of 1. Use the
DAGetImageListCount function to determine the number of images in the
list.

ImageFileName The path and file name of the file to create to store the image data in.

DASaveToStream
Document management, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 7.16.

Description

Saves the file to a TStream.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DASaveToStream(FileHandle: Integer;
 OutStream: TStream): Integer;

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

OutStream The Delphi TStream object to save the file into

Return values

0 The file could not be saved to the stream

1 The file was successfully saved to the stream

DASetInformation
Document properties, Direct access functionality

Description

Sets values in the document information section. This could be standard information such as
Author and Subject, or custom information.
For CreationDate and ModDate (modification date), the format of the date should be:
D:YYYYMMDDHHmmSSOHH'mm'
where
YYYY shall be the year
MM shall be the month (01-12)
DD shall be the day (01-31)
HH shall be the hour (00-23)
mm shall be the minute (00-59)
SS shall be the second (00-59)
O shall be the relationship of local time to Universal Time (UT) using a +, - or Z character
HH followed by APOSTROPHE (U+0027) (') shall be the absolute value of the offset from UT in
hours (00-23)
mm followed by an optional APOSTROPHE (U+0027) (') shall be the absolute value of the offset
from UT in minutes (00-59)

Syntax

 Delphi

function TDebenuPDFLibrary1113.DASetInformation(FileHandle: Integer; Key,
 NewValue: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DASetInformation(
 FileHandle As Long, Key As String, NewValue As String) As Long

 DLL

int DPLDASetInformation(int InstanceID, int FileHandle, wchar_t * Key,
 wchar_t * NewValue);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

Key For standard information use "Author", "Title", "Subject", "Keywords", "Creator",
"Producer", "CreationDate" or "ModDate". For custom information any other string
can be used.

NewValue The new value for the specified key.

Return values

0 The specified FileHandle was not valid

1 The information key was set or updated successfully

DASetPageBox
Direct access functionality, Page properties

Version history

This function was introduced in Quick PDF Library version 7.22.

Description

Sets the dimensions of the specified page's boundary rectangles.
The MediaBox represents the physical medium of the page.
The CropBox represents the visible region of the page, the contents will be clipped to this region.
The BleedBox is similar to the CropBox, but is the rectangle used in a production environment.
The TrimBox indicates the intended dimensions of the finished page after trimming, and the ArtBox
defines the extent of the page's meaningful content as intended by the page's creator.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DASetPageBox(FileHandle, PageRef,
 BoxIndex: Integer; X1, Y1, X2, Y2: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DASetPageBox(FileHandle As Long,
 PageRef As Long, BoxIndex As Long, X1 As Double, Y1 As Double,
 X2 As Double, Y2 As Double) As Long

 DLL

int DPLDASetPageBox(int InstanceID, int FileHandle, int PageRef,
 int BoxIndex, double X1, double Y1, double X2, double Y2);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

PageRef A page reference returned by the DAFindPage or DANewPage functions

BoxIndex 1 = MediaBox
2 = CropBox
3 = BleedBox
4 = TrimBox
5 = ArtBox

X1 The horizontal coordinate of the bottom left corner of the box measured in points
from the left edge of the page

Y1 The vertical coordinate of the bottom left corner of the box measured in points
from the bottom of the page

X2 The horizontal coordinate of the top right corner of the box measured in points
from the bottom of the page

Y2 The vertical coordinate of the top right corner of the box measured in points from
the bottom of the page

Return values

0 The FileHandle or PageRef parameters were invalid

1 Success

DASetPageLayout
Document properties, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 11.11.

Description

Sets the initial page layout of the document using the irect Access Functionality.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DASetPageLayout(FileHandle,
 NewPageLayout: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DASetPageLayout(
 FileHandle As Long, NewPageLayout As Long) As Long

 DLL

int DPLDASetPageLayout(int InstanceID, int FileHandle, int NewPageLayout);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

NewPageLayout 0 = Single page
1 = One column
2 = Two columns, odd-numbered pages on left
3 = Two columns, odd-numbered pages on right
4 = Two pages, odd-numbered pages on left
5 = Two pages, odd-numbered pages on right
6 = No preference (setting removed from document)

Return values

0 The page layout could not be set

1 The page layout was set successfully

DASetPageMode
Document properties, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 11.11.

Description

Sets the initial page mode of the document using the Direct Access functionality.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DASetPageMode(FileHandle,
 NewPageMode: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DASetPageMode(
 FileHandle As Long, NewPageMode As Long) As Long

 DLL

int DPLDASetPageMode(int InstanceID, int FileHandle, int NewPageMode);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

NewPageMode 0 = Normal view
1 = Show the outlines pane
2 = Show the thumbnails pane
3 = Show the document in full screen mode
4 = Optional content group panel visible
5 = Attachments panel visible

Return values

0 The page mode could not be set

1 The page mode was set successfully

DASetPageSize
Direct access functionality, Page properties

Description

Sets the specified page to have a certain width and height.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DASetPageSize(FileHandle, PageRef: Integer;
 PntWidth, PntHeight: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DASetPageSize(
 FileHandle As Long, PageRef As Long, PntWidth As Double,
 PntHeight As Double) As Long

 DLL

int DPLDASetPageSize(int InstanceID, int FileHandle, int PageRef,
 double PntWidth, double PntHeight);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

PageRef A page reference returned by the DAFindPage or DANewPage functions

PntWidth The new width of the page, measured in points

PntHeight The new height of the page, measured in points

Return values

0 The specified FileHandle or PageRef were not valid

1 The page size was set successfully

DASetTextExtractionArea
Text, Extraction, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 8.13.

Description

Sets the area for certain modes of text extraction. Any text that appears outside this area will be
excluded from the results. This function has no effect on text extraction using modes 0 to 2.
This function affects the results of the ExtractFilePageText and DAExtractPageText functions
only.
The coordinate values passed into this function are specified in points with the bottom left corner of
the page as the origin.
The area limitation can be removed by calling this function with a value of zero for both the Width
and Height parameters.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DASetTextExtractionArea(Left, Top, Width,
 Height: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DASetTextExtractionArea(
 Left As Double, Top As Double, Width As Double,
 Height As Double) As Long

 DLL

int DPLDASetTextExtractionArea(int InstanceID, double Left, double Top,
 double Width, double Height);

Parameters

Left The horizontal coordinate of the left edge of the area

Top The vertical coordinate of the top edge of the area

Width The width of the area

Height The height of the area

Return values

1 The text extraction area was set successfully

2 The text extraction area was cleared

DASetTextExtractionOptions
Text, Extraction, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 8.13.

Description

Sets various options that affect the text extraction functionality.

This function affects the results of the ExtractFilePageText and DAExtractPageText functions only.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DASetTextExtractionOptions(OptionID,
 NewValue: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DASetTextExtractionOptions(
 OptionID As Long, NewValue As Long) As Long

 DLL

int DPLDASetTextExtractionOptions(int InstanceID, int OptionID,
 int NewValue);

Parameters

OptionID 1 = Ignore Font changes to allow grouping different blocks together
2 = Ignore Color changes to allow grouping different blocks together
3 = Ignore Text Block changes to allow grouping different blocks together
4 = Output CMYK color values
5 = Sort text blocks based on top left position
6 = Descenders from font metrics
7 = Ignore overlaps
8 = Ignore duplicates
9 = Split on double space
10 = Trim characters outside area
11 = Alternative block matching
12 = Ignore rotated text blocks
13 = Trim leading and trailing whitespace from text blocks
14 = Output non ASCII characters below Space character (0x32)
15 = Remove certain character strings such as underscore lines (see below)

NewValue For OptionID = 1, 2, 3 and 6:
0 = Use, 1 = Ignore

For OptionID = 4:
0 = Show as RGB (default), 1 = Show as CMYK

For OptionID = 5:
0 = Do not sort blocks (default), 1 = Sort blocks

For OptionID = 7, 8 and 12:
0 = Do not ignore, 1 = Ignore

OptionID = 9:
0 = Do not split on double space (default)
1 = Split on double space

OptionID = 10:
0 = Do not trim characters outside area (default)
1 = Trim characters outside area

OptionID = 11:
0 = Regular block matching
1 = Alternative block matching

OptionID = 13:
0 = Do not trim leading or trailing whitespace
1 = Trim leading and trailing whitespace

OptionID = 14
0 = Remove non ASCII chracters below space character from output (default)
1 = Output raw unfiltered ASCII characters

OptionID = 15
0 = Output text lines made with Underscore characters (default)
1 = Remove text lines made with Underscore characters

Return values

0 The OptionID or NewValue parameter was not valid

1 The text extraction option was set successfully

DASetTextExtractionScaling
Text, Extraction, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 8.16.

Description

Sets the scaling to use for text extraction in Mode 7. This controls the number of rows and columns
in the monospaced text output.
This function affects the results of the ExtractFilePageText and DAExtractPageText functions
only.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DASetTextExtractionScaling(
 Options: Integer; Horizontal, Vertical: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DASetTextExtractionScaling(
 Options As Long, Horizontal As Double,
 Vertical As Double) As Long

 DLL

int DPLDASetTextExtractionScaling(int InstanceID, int Options,
 double Horizontal, double Vertical);

Parameters

Options Should always be set to 0. This indicates a scaling factor will be set for the
Horizontal and Vertical parameters, with a default value of 5 for horizontal and 8
for vertical. Smaller values stretch the text out into more rows/columns.

Horizontal The scaling to use for the horizontal axis in units defined by the Options
parameter.

Vertical The scaling to use for the vertical axis in units defined by the Options parameter.

Return values

0 The Options parameter was not valid or a value less than 1 was used for the
Horizontal or Vertical parameters.

1 Text extraction scaling was set successfully.

DASetTextExtractionWordGap
Text, Extraction, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 8.13.

Description

Sets the word gap ratio for the text extraction functionality.
This function affects the results of the ExtractFilePageText and DAExtractPageText functions
only.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DASetTextExtractionWordGap(
 NewWordGap: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DASetTextExtractionWordGap(
 NewWordGap As Double) As Long

 DLL

int DPLDASetTextExtractionWordGap(int InstanceID, double NewWordGap);

Parameters

NewWordGap The new WordGap ratio

Return values

1 The word gap ratio was set successfully.

DAShiftedHeader
Document management, Direct access functionality

Version history

This function was introduced in Quick PDF Library version 9.15.

Description

Returns a value to determine if the source PDF was malformed due to byte shifting. For example,
leading whitespace added to the file.
In such a case the file will be loaded taking this offset into account. This function will return a
non-zero number indicating the number of bytes the file was shifted by.
Note that if the file is loaded this way it will not be possible to use the DAAppendFile function to
add an incremental update.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DAShiftedHeader(
 FileHandle: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DAShiftedHeader(
 FileHandle As Long) As Long

 DLL

int DPLDAShiftedHeader(int InstanceID, int FileHandle);

Parameters

FileHandle A handle returned by the DAOpenFile, DAOpenFileReadOnly or
DAOpenFromStream functions

Return values

0 The file was loaded as usual

Non-zero The number of bytes the file was shifted by

Decrypt
Document properties, Security and Signatures

Version history

This function was renamed in Quick PDF Library version 7.11.
The function name in earlier versions was Unencrypt.

Description

This function attempts to remove the encryption setting from the selected document using the
password provided when originally opening the document.
This function will succeed even if the user password was used (including an valid blank password)
rather than the master password. Developers are advised that they should respect the security
wishes of the document's author.

Syntax

 Delphi

function TDebenuPDFLibrary1113.Decrypt: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::Decrypt As Long

 DLL

int DPLDecrypt(int InstanceID);

Return values

0 The document could not be decrypted

1 The document was decrypted successfully

DecryptFile
Document management, Security and Signatures

Description

This function attempts to remove the encryption from a file on disk, saving the decrypted
document to a new file.
This function will succeed even if the user password is supplied (including an valid blank password)
rather than the master password. Developers are advised that they should respect the security
wishes of the document's author.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DecryptFile(InputFileName, OutputFileName,
 Password: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DecryptFile(
 InputFileName As String, OutputFileName As String,
 Password As String) As Long

 DLL

int DPLDecryptFile(int InstanceID, wchar_t * InputFileName,
 wchar_t * OutputFileName, wchar_t * Password);

Parameters

InputFileName The name of the file to decrypt.

OutputFileName The name of the destination file to create. If this file already exists it will be
overwritten.

Password The password to use when decrypting the file.

Return values

0 The document could not be decrypted. Check the result of the
LastErrorCode function to determine the cause of the failure.

1 The document was decrypted successfully

DeleteAnalysis
Document properties

Description

Removes a set of analysis results from memory. Call this function after calling AnalyseFile and
GetAnalysisInfo when you no longer need the information.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DeleteAnalysis(
 AnalysisID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DeleteAnalysis(
 AnalysisID As Long) As Long

 DLL

int DPLDeleteAnalysis(int InstanceID, int AnalysisID);

Parameters

AnalysisID The ID of the set of analysis results to delete, as returned by the AnalyseFile
function

Return values

0 The specified analysis ID was not valid

1 The set of analysis results with the specified ID was deleted successfully

DeleteAnnotation
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 7.16.

Description

Removes an annotation from the selected page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DeleteAnnotation(Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DeleteAnnotation(
 Index As Long) As Long

 DLL

int DPLDeleteAnnotation(int InstanceID, int Index);

Parameters

Index The index of the annotation to delete. The first annotation on the page has an index
of 1. The AnnotationCount function returns the total number of annotations on the
selected page.

Return values

0 The specified annotation could not be deleted. Check the value of the Index
parameter is between 1 and the value returned by the AnnotationCount function.

1 The specified annotation was deleted from the page successfully.

DeleteContentStream
Content Streams and Optional Content Groups

Version history

This function was renamed in Quick PDF Library version 8.11.
The function name in earlier versions was DeleteLayer.

Description

A page in a PDF document has one or more content stream parts that together contain all the PDF
page description commands for the page.
This function removes the specified content stream part that was selected with the
SelectContentStream function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DeleteContentStream: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DeleteContentStream As Long

 DLL

int DPLDeleteContentStream(int InstanceID);

Return values

0 The content stream part could not be deleted

1 The content stream part was deleted successfully

DeleteFormField
Form fields

Description

Deletes the specified form field. If the field is deleted successfully the field index of subsequent
form fields will be decreased by 1.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DeleteFormField(Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DeleteFormField(
 Index As Long) As Long

 DLL

int DPLDeleteFormField(int InstanceID, int Index);

Parameters

Index The index of the form field to delete

Return values

0 The form field was not found

1 The form field was deleted successfully

DeleteOptionalContentGroup
Content Streams and Optional Content Groups

Description

Deletes an optional content group.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DeleteOptionalContentGroup(
 OptionalContentGroupID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DeleteOptionalContentGroup(
 OptionalContentGroupID As Long) As Long

 DLL

int DPLDeleteOptionalContentGroup(int InstanceID,
 int OptionalContentGroupID);

Parameters

OptionalContentGroupID An ID returned by the NewOptionalContentGroup,
GetOptionalContentGroupID or
GetOptionalContentConfigOrderItemID functions

DeletePageLGIDict
Page properties, Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 7.15.

Description

Deletes the specified LGIDict dictionary from the selected page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DeletePageLGIDict(
 DictIndex: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DeletePageLGIDict(
 DictIndex As Long) As Long

 DLL

int DPLDeletePageLGIDict(int InstanceID, int DictIndex);

Parameters

DictIndex The index of the LGIDict dictionary to delete. The first dictionary has an index of 1.
Use the GetPageLGIDictCount function to determine the number of LGIDict
dictionaries attached to the selected page.

Return values

0 The dictionary could not be deleted. Check that the DictIndex parameter is in
range.

1 The specified dictionary was deleted successfully.

DeletePages
Page manipulation

Description

Removes one or more pages from the document. The document will always have at least one page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DeletePages(StartPage,
 PageCount: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DeletePages(StartPage As Long,
 PageCount As Long) As Long

 DLL

int DPLDeletePages(int InstanceID, int StartPage, int PageCount);

Parameters

StartPage The page number of the first page to delete

PageCount The total number of pages to delete. The value will be automatically adjusted if
necessary so that the document is left with at least one page.

Return values

0 The PageCount parameter was 0 or there was only a single page in the
document.

Non-zero The number of pages remaining in the original document.

DocJavaScriptAction
Document properties, JavaScript

Description

This function is used to add JavaScript to document events. This JavaScript will be executed when,
for example, the document is closed or printed.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DocJavaScriptAction(ActionType,
 JavaScript: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DocJavaScriptAction(
 ActionType As String, JavaScript As String) As Long

 DLL

int DPLDocJavaScriptAction(int InstanceID, wchar_t * ActionType,
 wchar_t * JavaScript);

Parameters

ActionType The event to attach the JavaScript to:
"WC" = Will close
"WS" = Will save
"DS" = Did save
"WP" = Will print
"DP" = Did print

JavaScript The JavaScript to attach to the event.

Return values

0 The specified ActionType was not valid

1 The JavaScript was added successfully

DocumentCount
Document management

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Returns the total number of documents.
When an instance of Quick PDF Library is first created a blank one page document is automatically
created so the document count will be 1. Each time a new document is created or loaded the
document count will be increased. The RemoveDocument function will only succeed if there are
at least two documents loaded, so the document count will always be at least 1.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DocumentCount: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DocumentCount As Long

 DLL

int DPLDocumentCount(int InstanceID);

DrawArc
Vector graphics

Description

Draw a circular arc on the selected page. The arc is drawn in a clockwise direction from StartAngle
to EndAngle.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawArc(XPos, YPos, Radius, StartAngle,
 EndAngle: Double; Pie, DrawOptions: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawArc(XPos As Double,
 YPos As Double, Radius As Double, StartAngle As Double,
 EndAngle As Double, Pie As Long, DrawOptions As Long) As Long

 DLL

int DPLDrawArc(int InstanceID, double XPos, double YPos, double Radius,
 double StartAngle, double EndAngle, int Pie, int DrawOptions);

Parameters

XPos Horizontal co-ordinate of the center of the arc

YPos Vertical co-ordinate of center of the arc

Radius Radius of the arc

StartAngle Angle to start drawing from

EndAngle Angle to end drawing at

Pie Draw the arms of the arc:
0 = No
1 = Yes

DrawOptions 0 = Outline
1 = Fill
2 = Fill and Outline
3 = Close, Fill and Outline (if Pie = 1)

DrawBarcode
Vector graphics, Barcodes

Description

Draws a barcode on the selected page.

For Code128, the barcode is a combination of the "B" and "C" character sets resulting in the most compact representation.

GS1-128 barcodes (also known as EAN-128) can be drawn by setting the Barcode parameter to 3 (Code128) and using the
string "[FNC1]" in the appropriate place. For example:
"[FNC1]21ABC123[FNC1]2013"

The previous example indicates a serial number (AI 21) of "ABC123" and a product variant (AI 20) of "13".

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawBarcode(Left, Top, Width,
 Height: Double; Text: WideString; Barcode, Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawBarcode(Left As Double,
 Top As Double, Width As Double, Height As Double,
 Text As String, Barcode As Long, Options As Long) As Long

 DLL

int DPLDrawBarcode(int InstanceID, double Left, double Top, double Width,
 double Height, wchar_t * Text, int Barcode, int Options);

Parameters

Left Horizontal co-ordinate of left edge of the barcode

Top Vertical co-ordinate of top edge of the barcode

Width Width of the barcode

Height Height of the barcode

Text The barcode data. The barcode can be rotated by appending the following to the barcode data string:
/RC = Rotate clockwise
/RA = Rotate anti-clockwise
/RU = Rotate 180 degrees

Barcode 1 = Code39 (or Code 3 of 9)
2 = EAN-13
3 = Code128
4 = PostNet
5 = Interleaved 2 of 5

Options Code39:
0 = Default drawing

EAN-13:
0 = Only draw the barcode
1 = Extend the guard bars
2 = Draw the human-readable numbers
3 = Draw the human-readable numbers, with right spacer

Code128:
0 = Default drawing

PostNet:
0 = Default drawing

Interleaved 2 of 5:
0 = Do not add a checksum, no bearer bars
1 = Add a checksum character, no bearer bars
2 = Do not add a checksum, draw bearer bars
3 = Add a checksum character, draw bearer bars

To apply 10% bar width reduction to the barcode, increase the value of the Options parameter by 10

Return values

0 The barcode could not be drawn. Invalid Barcode or Options parameters.

1 The barcode was drawn successfully

DrawBox
Vector graphics, Page manipulation

Description

Draw a rectangle on the selected page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawBox(Left, Top, Width, Height: Double;
 DrawOptions: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawBox(Left As Double,
 Top As Double, Width As Double, Height As Double,
 DrawOptions As Long) As Long

 DLL

int DPLDrawBox(int InstanceID, double Left, double Top, double Width,
 double Height, int DrawOptions);

Parameters

Left Horizontal co-ordinate of left edge of rectangle

Top Vertical co-ordinate of top edge of rectangle

Width Rectangle width

Height Rectangle height

DrawOptions 0 = Outline
1 = Fill
2 = Fill and Outline

DrawCapturedPage
Page layout

Description

This function draws a page previously captured with the CapturePage function onto the current
page. It can be drawn at any size and position, allowing for imposition of pages.
You cannot use CapturePage to move pages from one document to another so all the required
pages must be merged into a single document before calling CapturePage. The CaptureID is just a
pointer to a hidden page therefore does not need to be released.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawCapturedPage(CaptureID: Integer; Left,
 Top, Width, Height: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawCapturedPage(
 CaptureID As Long, Left As Double, Top As Double,
 Width As Double, Height As Double) As Long

 DLL

int DPLDrawCapturedPage(int InstanceID, int CaptureID, double Left,
 double Top, double Width, double Height);

Parameters

CaptureID The ID returned by the CapturePage function when a page was previously
captured

Left The co-ordinate of the left edge of the destination area

Top The co-ordinate of the top edge of the destination area

Width The width of the destination area

Height The height of the destination area

Return values

0 An invalid CaptureID was specified

1 The captured page was drawn successfully

DrawCapturedPageMatrix
Page layout

Version history

This function was introduced in Quick PDF Library version 9.15.

Description

This function draws a page previously captured with the CapturePage function onto the current
page. The size/position/rotation is specified using a transformation matrix, allowing for advanced
imposition of pages.
You cannot use CapturePage to move pages from one document to another so all the required
pages must be merged into a single document before calling CapturePage. The CaptureID is just a
pointer to a hidden page therefore does not need to be released.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawCapturedPageMatrix(CaptureID: Integer;
 M11, M12, M21, M22, MDX, MDY: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawCapturedPageMatrix(
 CaptureID As Long, M11 As Double, M12 As Double,
 M21 As Double, M22 As Double, MDX As Double,
 MDY As Double) As Long

 DLL

int DPLDrawCapturedPageMatrix(int InstanceID, int CaptureID, double M11,
 double M12, double M21, double M22, double MDX, double MDY);

Parameters

CaptureID The ID returned by the CapturePage function when a page was previously
captured

M11 Matrix component

M12 Matrix component

M21 Matrix component

M22 Matrix component

MDX Matrix component

MDY Matrix component

Return values

0 An invalid CaptureID was specified

1 The captured page was drawn successfully

DrawCircle
Vector graphics

Description

Draw a circle on the selected page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawCircle(XPos, YPos, Radius: Double;
 DrawOptions: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawCircle(XPos As Double,
 YPos As Double, Radius As Double, DrawOptions As Long) As Long

 DLL

int DPLDrawCircle(int InstanceID, double XPos, double YPos, double Radius,
 int DrawOptions);

Parameters

XPos Horizontal co-ordinate of the center of the circle

YPos Vertical co-ordinate of center of the circle

Radius Size of the circle

DrawOptions 0 = Outline
1 = Fill
2 = Fill and Outline

DrawDataMatrixSymbol
Vector graphics, Barcodes

Description

This function draws a Data Matrix symbol onto the page. Data Matrix is a 2D barcode symbology allowing large amounts of data to be stored.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawDataMatrixSymbol(Left, Top,
 ModuleSize: Double; Text: WideString; Encoding, SymbolSize,
 Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawDataMatrixSymbol(
 Left As Double, Top As Double, ModuleSize As Double,
 Text As String, Encoding As Long, SymbolSize As Long,
 Options As Long) As Long

 DLL

int DPLDrawDataMatrixSymbol(int InstanceID, double Left, double Top,
 double ModuleSize, wchar_t * Text, int Encoding,
 int SymbolSize, int Options);

Parameters

Left The horizontal co-ordinate of the left edge of the symbol

Top The vertical co-ordinate of the top edge of the symbol

ModuleSize This value is used for the width and height of the dots which make up the symbol

Text The text/data to store in the symbol

Encoding 1 = ASCII encoding. See the Data Matrix specification for details.

SymbolSize 0 = Auto size
1 = 10x10
2 = 12x12
3 = 8x18
4 = 14x14
5 = 8x32
6 = 16x16
7 = 12x26
8 = 18x18
9 = 20x20
10 = 12x36
11 = 22x22
12 = 16x36
13 = 24x24
14 = 26x26
15 = 16x48
16 = 32x32
17 = 36x36
18 = 40x40
19 = 44x44
20 = 48x48
21 = 52x52
22 = 64x64
23 = 72x72
24 = 80x80
25 = 88x88
26 = 96x96
27 = 104x104
28 = 120x120
29 = 132x132

Options 0 = Normal
1 = Rotate 90 degrees counter clockwise
2 = Rotate 180 degrees
3 = Rotate 90 degrees clockwise

Add 100 to for 1 unit quiet zone (white border) - (default)
Add 200 to for 2 units quiet zone
Add 300 to for 3 units quiet zone
Add 400 to for 4 units quiet zone

Return values

0 The Encoding, SymbolSize or Options parameter was invalid

1 The Data Matrix symbol was drawn successfully

DrawEllipse
Vector graphics

Description

Draws an ellipse centered at a certain point which fits into the specified size box.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawEllipse(XPos, YPos, Width,
 Height: Double; DrawOptions: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawEllipse(XPos As Double,
 YPos As Double, Width As Double, Height As Double,
 DrawOptions As Long) As Long

 DLL

int DPLDrawEllipse(int InstanceID, double XPos, double YPos, double Width,
 double Height, int DrawOptions);

Parameters

XPos The horizontal co-ordinate of the center of the ellipse

YPos The vertical co-ordinate of the center of the ellipse

Width The width of the ellipse

Height The height of the ellipse

DrawOptions 0 = Outline
1 = Fill
2 = Fill and Outline

DrawEllipticArc
Vector graphics

Description

Draws an arc which is the result of cutting an ellipse between the start angle and the end angle.
The angles are measured anti-clockwise with 0 being at the top of the ellipse. ie. 12 O'Clock = 0
degrees and 9 O'Clock is 90 degrees.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawEllipticArc(XPos, YPos, Width, Height,
 StartAngle, EndAngle: Double; Pie, DrawOptions: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawEllipticArc(XPos As Double,
 YPos As Double, Width As Double, Height As Double,
 StartAngle As Double, EndAngle As Double, Pie As Long,
 DrawOptions As Long) As Long

 DLL

int DPLDrawEllipticArc(int InstanceID, double XPos, double YPos,
 double Width, double Height, double StartAngle,
 double EndAngle, int Pie, int DrawOptions);

Parameters

XPos The horizontal co-ordinate of the center of the ellipse

YPos The vertical co-ordinate of the center of the ellipse

Width The width of the ellipse

Height The height of the ellipse

StartAngle The angle to start the curve at

EndAngle The angle to end the curve at

Pie Draw the arms of the arc:
0 = No
1 = Yes

DrawOptions 0 = Outline
1 = Fill
2 = Fill and Outline
3 = Close, Fill and Outline (if Pie = 1)

DrawHTMLText
Text, HTML text, Page layout

Description

Draws HTML text onto the page. See Appendix A for details of the supported HTML tags.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawHTMLText(Left, Top, Width: Double;
 HTMLText: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawHTMLText(Left As Double,
 Top As Double, Width As Double, HTMLText As String) As Long

 DLL

int DPLDrawHTMLText(int InstanceID, double Left, double Top, double Width,
 wchar_t * HTMLText);

Parameters

Left The left edge of the area to draw the text into

Top The top edge of the area to draw the text into

Width The width of the area to draw the text into

HTMLText The HTML text to draw

DrawHTMLTextBox
Text, HTML text, Page layout

Description

Similar to the DrawHTMLText function, but the text drawn is limited to a specific area. The
remaining HTML text is returned, which can be passed to this function again (perhaps on a
different page or location) until the function returns an empty string. See Appendix A for details
of the supported HTML tags.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawHTMLTextBox(Left, Top, Width,
 Height: Double; HTMLText: WideString): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawHTMLTextBox(Left As Double,
 Top As Double, Width As Double, Height As Double,
 HTMLText As String) As String

 DLL

wchar_t * DPLDrawHTMLTextBox(int InstanceID, double Left, double Top,
 double Width, double Height, wchar_t * HTMLText);

Parameters

Left Horizontal co-ordinate of the left edge of the drawing area

Top Vertical co-ordinate of the top edge of the drawing area

Width The width of the drawing area

Height The height of the drawing area

HTMLText The HTML text to draw

Return values

LeftOverText A "string" containing the text that did not fit into the TextBox. This value can
be resused to draw the undrawn text into a new text box often on the next
page.

DrawHTMLTextBoxMatrix
Text, HTML text, Page layout

Version history

This function was introduced in Quick PDF Library version 9.15.

Description

Similar to the DrawHTMLTextBox function but the position/scaling/rotation is specified using a
transformation matrix.
The remaining HTML text is returned, which can be passed to this function again (perhaps on a
different page or location) until the function returns an empty string. See Appendix A for details
of the supported HTML tags.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawHTMLTextBoxMatrix(Width,
 Height: Double; HTMLText: WideString; M11, M12, M21, M22, MDX,
 MDY: Double): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawHTMLTextBoxMatrix(
 Width As Double, Height As Double, HTMLText As String,
 M11 As Double, M12 As Double, M21 As Double, M22 As Double,
 MDX As Double, MDY As Double) As String

 DLL

wchar_t * DPLDrawHTMLTextBoxMatrix(int InstanceID, double Width,
 double Height, wchar_t * HTMLText, double M11, double M12,
 double M21, double M22, double MDX, double MDY);

Parameters

Width The width of the drawing area

Height The height of the drawing area

HTMLText The HTML text to draw

M11 Matrix component

M12 Matrix component

M21 Matrix component

M22 Matrix component

MDX Matrix component

MDY Matrix component

DrawHTMLTextMatrix
HTML text, Page layout

Version history

This function was introduced in Quick PDF Library version 10.11.

Description

Similar to the DrawHTMLText function but the position/scaling/rotation is specified using a
transformation matrix.
See Appendix A for details of the supported HTML tags.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawHTMLTextMatrix(Width: Double;
 HTMLText: WideString; M11, M12, M21, M22, MDX, MDY: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawHTMLTextMatrix(
 Width As Double, HTMLText As String, M11 As Double,
 M12 As Double, M21 As Double, M22 As Double, MDX As Double,
 MDY As Double) As Long

 DLL

int DPLDrawHTMLTextMatrix(int InstanceID, double Width,
 wchar_t * HTMLText, double M11, double M12, double M21,
 double M22, double MDX, double MDY);

Parameters

Width The width of the area to draw the text into

HTMLText The HTML text to draw

M11 Matrix component

M12 Matrix component

M21 Matrix component

M22 Matrix component

MDX Matrix component

MDY Matrix component

DrawImage
Image handling, Page layout

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Draw the selected image on the page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawImage(Left, Top, Width,
 Height: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawImage(Left As Double,
 Top As Double, Width As Double, Height As Double) As Long

 DLL

int DPLDrawImage(int InstanceID, double Left, double Top, double Width,
 double Height);

Parameters

Left Horizontal co-ordinate of the left edge of the image

Top Vertical co-ordinate of the top edge of the image

Width Width of the image

Height Height of the image

Return values

0 An image has not been selected

1 The image was drawn successfully

DrawImageMatrix
Image handling, Page layout

Version history

This function was introduced in Quick PDF Library version 7.25.

Description

Draws the selected image on the page using a transformation matrix.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawImageMatrix(M11, M12, M21, M22, MDX,
 MDY: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawImageMatrix(M11 As Double,
 M12 As Double, M21 As Double, M22 As Double, MDX As Double,
 MDY As Double) As Long

 DLL

int DPLDrawImageMatrix(int InstanceID, double M11, double M12, double M21,
 double M22, double MDX, double MDY);

Parameters

M11 Matrix component

M12 Matrix component

M21 Matrix component

M22 Matrix component

MDX Matrix component

MDY Matrix component

Return values

0 An image has not been selected

1 The image was drawn successfully

DrawIntelligentMailBarcode
Vector graphics, Barcodes

Version history

This function was introduced in Quick PDF Library version 8.15.

Description

This function draws a USPS Intelligent Mail (also known as OneCode) barcode onto the page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawIntelligentMailBarcode(Left, Top,
 BarWidth, FullBarHeight, TrackerHeight, SpaceWidth: Double;
 BarcodeData: WideString; Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawIntelligentMailBarcode(
 Left As Double, Top As Double, BarWidth As Double,
 FullBarHeight As Double, TrackerHeight As Double,
 SpaceWidth As Double, BarcodeData As String,
 Options As Long) As Long

 DLL

int DPLDrawIntelligentMailBarcode(int InstanceID, double Left, double Top,
 double BarWidth, double FullBarHeight, double TrackerHeight,
 double SpaceWidth, wchar_t * BarcodeData, int Options);

Parameters

Left Horizontal co-ordinate of the left edge of the barcode

Top Vertical co-ordinate of the top edge of the barcode

BarWidth The width of the bars

FullBarHeight The height of a full bar

TrackerHeight The height of a tracker bar

SpaceWidth The width of the spaces between the bars

BarcodeData The barcode data to encode. This should be a 20, 25, 29 or 31 character
string containing only the digits 0 to 9. No spaces or any other non-numeric
characters will be accepted. The second digit has a maximum value of 4.

Options 0 = Normal
10 = Bar width reduction

Return values

0 The barcode could not be drawn

1 The barcode was drawn successfully

DrawLine
Vector graphics

Description

Draws a line between two points.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawLine(StartX, StartY, EndX,
 EndY: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawLine(StartX As Double,
 StartY As Double, EndX As Double, EndY As Double) As Long

 DLL

int DPLDrawLine(int InstanceID, double StartX, double StartY, double EndX,
 double EndY);

Parameters

StartX Horizontal co-ordinate of start point

StartY Vertical co-ordinate of start point

EndX Horizontal co-ordinate of end point

EndY Vertical co-ordinate of end point

DrawMultiLineText
Text, Page layout

Description

Draw text which is wrapped at a specific delimiter. The SetTextAlign function can be used to
change the alignment of the text.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawMultiLineText(XPos, YPos: Double;
 Delimiter, Text: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawMultiLineText(
 XPos As Double, YPos As Double, Delimiter As String,
 Text As String) As Long

 DLL

int DPLDrawMultiLineText(int InstanceID, double XPos, double YPos,
 wchar_t * Delimiter, wchar_t * Text);

Parameters

XPos The horizontal reference point of the text block

YPos The baseline of the first line of text

Delimiter The delimiter to use when splitting the text into lines. The only valid characters to
use as the delimiter are characters which have a "width", as well as the CR and LF
characters (ASCII values 13 and 10).

Text The text to draw

DrawPDF417Symbol
Vector graphics, Barcodes

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Draws a PDF417 symbol onto the selected page.
From version 9.15 the DrawPDF417SymbolEx function can be used for extra functionality.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawPDF417Symbol(Left, Top: Double;
 Text: WideString; Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawPDF417Symbol(Left As Double,
 Top As Double, Text As String, Options As Long) As Long

 DLL

int DPLDrawPDF417Symbol(int InstanceID, double Left, double Top,
 wchar_t * Text, int Options);

Parameters

Left The horizontal coordinate of the left edge of the PDF417 symbol

Top The vertical coordinate of the top edge of the PDF417 symbol

Text The text to store in the symbol

Options 0 = Normal
1 = Rotate 90 degrees counter clockwise
2 = Rotate 180 degrees
3 = Rotate 90 degrees clockwise

Return values

0 The Options parameter was invalid

1 The PDF417 symbol was drawn successfully

DrawPDF417SymbolEx
Vector graphics, Barcodes

Version history

This function was introduced in Quick PDF Library version 9.15.

Description

Draws a PDF417 symbol onto the selected page. Similar to DrawPDF417Symbol but providing
extra functionality.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawPDF417SymbolEx(Left, Top: Double;
 Text: WideString; Options, FixedColumns, FixedRows, ErrorLevel: Integer;
 ModuleSize, HeightWidthRatio: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawPDF417SymbolEx(
 Left As Double, Top As Double, Text As String,
 Options As Long, FixedColumns As Long, FixedRows As Long,
 ErrorLevel As Long, ModuleSize As Double,
 HeightWidthRatio As Double) As Long

 DLL

int DPLDrawPDF417SymbolEx(int InstanceID, double Left, double Top,
 wchar_t * Text, int Options, int FixedColumns, int FixedRows,
 int ErrorLevel, double ModuleSize, double HeightWidthRatio);

Parameters

Left The horizontal coordinate of the left edge of the PDF417 symbol

Top The vertical coordinate of the top edge of the PDF417 symbol

Text The text to store in the symbol

Options 0 = Normal
1 = Rotate 90 degrees counter clockwise
2 = Rotate 180 degrees
3 = Rotate 90 degrees clockwise

FixedColumns 0 = Auto
Non-zero = fixed number of columns

FixedRows 0 = Auto
Non-zero = fixed number of rows

ErrorLevel -1 = Auto
0 to 8 = User error level

ModuleSize The width of the smallest element in units defined by a call to
SetMeasurementUnits

HeightWidthRatio The ratio of the needed module height to the module width

Return values

0 One of the parameters was invalid or the text was too big for the symbol
site.

1 The PDF417 symbol was drawn successfully

DrawPath
Vector graphics, Path definition and drawing

Description

Draws the path defined by calls to StartPath, AddLineToPath, AddCurveToPath and/or
ClosePath.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawPath(PathOptions: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawPath(
 PathOptions As Long) As Long

 DLL

int DPLDrawPath(int InstanceID, int PathOptions);

Parameters

PathOptions 0 = Outline
1 = Fill
2 = Fill and Outline

DrawPathEvenOdd
Vector graphics, Path definition and drawing

Description

Similar to the DrawPath function, but draws the path using the "even odd" method. This is
important when different parts of the path overlap.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawPathEvenOdd(
 PathOptions: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawPathEvenOdd(
 PathOptions As Long) As Long

 DLL

int DPLDrawPathEvenOdd(int InstanceID, int PathOptions);

Parameters

PathOptions 0 = Outline
1 = Fill
2 = Fill and outline

DrawPostScriptXObject
Annotations and hotspot links, Page layout

Description

Adds a reference to a PostScript XObject at the current position in the page contents.
This function is for specific advanced use and will not be useful to the majority of users.
For historical reasons, the PDF specification allows raw PostScript language commands to be
embedded inside a document.
When the document is printed (using certain PDF software tools) on a PostScript printer, these raw
PostScript commands will be sent directly to the printer.
Most PDF viewers are not able to display this embedded PostScript because this would require a full
PostScript language interpreter.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawPostScriptXObject(
 PSRef: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawPostScriptXObject(
 PSRef As Long) As Long

 DLL

int DPLDrawPostScriptXObject(int InstanceID, int PSRef);

Parameters

PSRef A value that was returned by the NewPostScriptXObject function

Return values

0 The PostScript XObject could not be drawn

1 The PostScript XObject was drawn successfully

DrawQRCode
Vector graphics, Barcodes

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Version history

This function was introduced in Quick PDF Library version 10.11.

Description

Draws a QR Code onto the selected page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawQRCode(Left, Top, SymbolSize: Double;
 Text: WideString; EncodeOptions, DrawOptions: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawQRCode(Left As Double,
 Top As Double, SymbolSize As Double, Text As String,
 EncodeOptions As Long, DrawOptions As Long) As Long

 DLL

int DPLDrawQRCode(int InstanceID, double Left, double Top,
 double SymbolSize, wchar_t * Text, int EncodeOptions,
 int DrawOptions);

Parameters

Left The horizontal coordinate of the left edge of the QR Code

Top The vertical coordinate of the top edge of the QR Code

SymbolSize The width and height of the QR Code

Text The text to encode in the QR Code

EncodeOptions 0=Auto
1=Numeric
2=Alphanumeric
3=ISO-8859-1
4=UTF-8 with BOM
5=UTF-8 without BOM

DrawOptions 0 = Normal
1 = Rotate 90 degrees counter clockwise
2 = Rotate 180 degrees
3 = Rotate 90 degrees clockwise

Return values

0 The QR Code could not be drawn, check for an out of range value for the
EncodeOptions or DrawOptions parameter.

1 The QR Code was drawn successfully.

DrawRotatedBox
Vector graphics, Page manipulation

Version history

This function was introduced in Quick PDF Library version 8.14.

Description

Draws a rotated rectangle on the selected page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawRotatedBox(Left, Bottom, Width, Height,
 Angle: Double; DrawOptions: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawRotatedBox(Left As Double,
 Bottom As Double, Width As Double, Height As Double,
 Angle As Double, DrawOptions As Long) As Long

 DLL

int DPLDrawRotatedBox(int InstanceID, double Left, double Bottom,
 double Width, double Height, double Angle, int DrawOptions);

Parameters

Left The horizontal co-ordinate of the anchor point

Bottom The vertical co-ordinate of the anchor point

Width The width of the rectangle

Height The height of the rectangle

Angle The angle to rotate the rectangle, measured anti-clockwise in degrees from the
baseline, around the anchor point (bottom-left of the rectangle)

DrawOptions 0 = Outline
1 = Fill
2 = Fill and Outline

DrawRotatedCapturedPage
Page layout, Page manipulation

Description

Similar to the DrawCapturedPage function, but allows the captured page to be drawn at any
angle. Note that the anchor point is the bottom-left corner, not the top-left corner as with the
DrawCapturedPage function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawRotatedCapturedPage(CaptureID: Integer;
 Left, Bottom, Width, Height, Angle: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawRotatedCapturedPage(
 CaptureID As Long, Left As Double, Bottom As Double,
 Width As Double, Height As Double, Angle As Double) As Long

 DLL

int DPLDrawRotatedCapturedPage(int InstanceID, int CaptureID, double Left,
 double Bottom, double Width, double Height, double Angle);

Parameters

CaptureID The ID returned by the CapturePage function

Left The horizontal co-ordinate of the anchor point

Bottom The vertical co-ordinate of the anchor point

Width The width of the rectangle to place the captured page in

Height The height of the rectangle to place the captured page in

Angle The angle to rotate the captured page by, measured anti-clockwise in degrees
from the baseline

Return values

0 The CaptureID was not valid

1 The captured page was drawn successfully

DrawRotatedImage
Image handling, Page layout

Description

Similar to the DrawImage function but the image can be rotated at any angle. Note that the
anchor point is the bottom left corner of the image, not the top-left as in the DrawImage
function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawRotatedImage(Left, Bottom, Width,
 Height, Angle: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawRotatedImage(Left As Double,
 Bottom As Double, Width As Double, Height As Double,
 Angle As Double) As Long

 DLL

int DPLDrawRotatedImage(int InstanceID, double Left, double Bottom,
 double Width, double Height, double Angle);

Parameters

Left The horizontal co-ordinate of the anchor point

Bottom The vertical co-ordinate of the anchor point

Width The width of the image

Height The height of the image

Angle The angle to rotate the image, measured anti-clockwise in degrees from the
baseline, around the anchor point (bottom-left of the image)

Return values

0 No image has been selected

1 The image was drawn successfully

DrawRotatedMultiLineText
Text, Page layout

Version history

This function was introduced in Quick PDF Library version 8.14.

Description

Draws rotated text which is wrapped at a specific delimiter.
The SetTextAlign function can be used to change the alignment of the text.
The first line of text will start with the baseline at the anchor point used for rotation.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawRotatedMultiLineText(XPos, YPos,
 Angle: Double; Delimiter, Text: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawRotatedMultiLineText(
 XPos As Double, YPos As Double, Angle As Double,
 Delimiter As String, Text As String) As Long

 DLL

int DPLDrawRotatedMultiLineText(int InstanceID, double XPos, double YPos,
 double Angle, wchar_t * Delimiter, wchar_t * Text);

Parameters

XPos The horizontal coordinate of the anchor point

YPos The vertical coordinate of the anchor point

Angle The angle to rotate the text, measured anti-clockwise in degrees from the baseline,
around the anchor point

Delimiter The delimiter to use when splitting the text into lines. The only valid characters to
use as the delimiter are characters which have a "width", as well as the CR and LF
characters (ASCII values 13 and 10).

Text The text to draw

DrawRotatedText
Text, Page layout

Description

Draws text on the selected page, using the selected font at the predetermined font size. If no fonts
have been added, then the standard font Helvetica will automatically be added, selected and set to
12pt. The alignment of the text is determined by the previous call to the SetTextAlign function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawRotatedText(XPos, YPos, Angle: Double;
 Text: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawRotatedText(XPos As Double,
 YPos As Double, Angle As Double, Text As String) As Long

 DLL

int DPLDrawRotatedText(int InstanceID, double XPos, double YPos,
 double Angle, wchar_t * Text);

Parameters

XPos The horizontal position of where to draw the text

YPos The vertical position of where to draw the text. The reference point is the text
baseline.

Angle The angle to draw the text, measured anti-clockwise from the horizontal. Must be
between 0 and 360, inclusive.

Text The text to draw on the page

Return values

0 The Angle parameter was less than 0 or greater than 360, or the Text parameter
was blank

1 The text was drawn successfully

DrawRotatedTextBox
Text, Page layout

Description

Similar to the DrawTextBox function, but allows the text box to be rotated at any angle.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawRotatedTextBox(Left, Top, Width,
 Height, Angle: Double; Text: WideString; Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawRotatedTextBox(
 Left As Double, Top As Double, Width As Double,
 Height As Double, Angle As Double, Text As String,
 Options As Long) As Long

 DLL

int DPLDrawRotatedTextBox(int InstanceID, double Left, double Top,
 double Width, double Height, double Angle, wchar_t * Text,
 int Options);

Parameters

Left The horizontal co-ordinate of the top-left corner of the text box

Top The vertical co-ordinate of the top-left corner of the text box

Width The width of the box

Height The height of the box

Angle The angle the box should be rotated around the top-left corner, measured
anti-clockwise in degrees

Text The text to place in the box

Options 0 = Center vertical alignment
1 = Top vertical alignment
2 = Bottom vertical alignment
3 = Center vertical alignment, no wrapping
4 = Top vertical alignment, no wrapping
5 = Bottom vertical alignment, no wrapping

Return values

0 The Options parameter was out of range, or the Width parameter was too small to
contain any text

Non-zero The number of lines of text actually drawn

DrawRotatedTextBoxEx
Text, Page layout

Description

Similar to the DrawRotatedTextBoxEx function, but allows the text box to show borders.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawRotatedTextBoxEx(Left, Top, Width,
 Height, Angle: Double; Text: WideString; Options, Border, Radius,
 DrawOptions: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawRotatedTextBoxEx(
 Left As Double, Top As Double, Width As Double,
 Height As Double, Angle As Double, Text As String,
 Options As Long, Border As Long, Radius As Long,
 DrawOptions As Long) As Long

 DLL

int DPLDrawRotatedTextBoxEx(int InstanceID, double Left, double Top,
 double Width, double Height, double Angle, wchar_t * Text,
 int Options, int Border, int Radius, int DrawOptions);

Parameters

Left The horizontal co-ordinate of the top-left corner of the text box

Top The vertical co-ordinate of the top-left corner of the text box

Width The width of the box

Height The height of the box

Angle The angle the box should be rotated around the top-left corner, measured
anti-clockwise in degrees

Text The text to draw on the page

Options 0 = Center vertical alignment
1 = Top vertical alignment
2 = Bottom vertical alignment
3 = Center vertical alignment, no wrapping
4 = Top vertical alignment, no wrapping
5 = Bottom vertical alignment, no wrapping

Border 0 = No Border
1 = Border
2 = Border with rounded corners

Radius Radius of the corner arcs

DrawOptions 0 = Outline
1 = Fill
2 = Fill and outline

Return values

0 The Options parameter was out of range, or the Width parameter was too
small to contain any text

Non-zero The number of lines of text actually drawn

DrawRoundedBox
Vector graphics, Page layout

Description

Draw a rectangle with rounded corners on the selected page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawRoundedBox(Left, Top, Width, Height,
 Radius: Double; DrawOptions: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawRoundedBox(Left As Double,
 Top As Double, Width As Double, Height As Double,
 Radius As Double, DrawOptions As Long) As Long

 DLL

int DPLDrawRoundedBox(int InstanceID, double Left, double Top,
 double Width, double Height, double Radius, int DrawOptions);

Parameters

Left Horizontal co-ordinate of left edge of rectangle

Top Vertical co-ordinate of top edge of rectangle

Width Rectangle width

Height Rectangle height

Radius Radius of the corner arcs

DrawOptions 0 = Outline
1 = Fill
2 = Fill and outline

DrawRoundedRotatedBox
Vector graphics, Page layout

Description

Draw a rotated rectangle with rounded corners on the selected page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawRoundedRotatedBox(Left, Bottom, Width,
 Height, Radius, Angle: Double; DrawOptions: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawRoundedRotatedBox(
 Left As Double, Bottom As Double, Width As Double,
 Height As Double, Radius As Double, Angle As Double,
 DrawOptions As Long) As Long

 DLL

int DPLDrawRoundedRotatedBox(int InstanceID, double Left, double Bottom,
 double Width, double Height, double Radius, double Angle,
 int DrawOptions);

Parameters

Left Horizontal co-ordinate of left edge of rectangle

Bottom Vertical co-ordinate of bottom edge of rectangle

Width Rectangle width

Height Rectangle height

Radius Radius of the corner arcs

Angle The angle the box should be rotated around the bottom-left corner, measured
anti-clockwise in degrees

DrawOptions 0 = Outline
1 = Fill
2 = Fill and outline

DrawScaledImage
Image handling, Page layout

Description

Draw the selected image on the page. The image is drawn at the scale specified, assuming 72 DPI
for both the horizontal and vertical resolution.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawScaledImage(Left, Top,
 Scale: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawScaledImage(Left As Double,
 Top As Double, Scale As Double) As Long

 DLL

int DPLDrawScaledImage(int InstanceID, double Left, double Top,
 double Scale);

Parameters

Left Horizontal co-ordinate of the left edge of the image

Top Vertical co-ordinate of the top edge of the image

Scale The scale to use, for example:
0.5 = 50%
1 = 100%

Return values

0 An image was not selected

1 The image was drawn successfully

DrawSpacedText
Text, Page layout

Description

Draws text on the selected page, using the selected font at the predetermined font size. If no fonts
have been added, then the 12 pt Helvetica will automatically be added and selected. Each
character will be spaced at regular intervals. The individual characters will be aligned relative to the
XPos variable depending on how the SetTextAlign function has been used.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawSpacedText(XPos, YPos, Spacing: Double;
 Text: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawSpacedText(XPos As Double,
 YPos As Double, Spacing As Double, Text As String) As Long

 DLL

int DPLDrawSpacedText(int InstanceID, double XPos, double YPos,
 double Spacing, wchar_t * Text);

Parameters

XPos The horizontal position of where to draw the text

YPos The vertical position of where to draw the text. The reference point is the text
baseline.

Spacing The spacing between the same point on each character

Text The text to draw on the page

DrawTableRows
Page layout

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Draws multiple rows from the specified table onto the selected page and returns the total height of
the drawn rows. Only the number of rows that fit into the specified height will be drawn. Use the
GetTableLastDrawnRow function to determine the row number of the last row.
In Quick PDF Library version 7.18 and earlier the result of this function was always reported in
points. From version 7.19 and later the value returned by this function is correctly scaled according
to the current co-ordinate system settings as set by the SetMeasurementUnits function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawTableRows(TableID: Integer; Left, Top,
 Height: Double; FirstRow, LastRow: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawTableRows(TableID As Long,
 Left As Double, Top As Double, Height As Double,
 FirstRow As Long, LastRow As Long) As Double

 DLL

double DPLDrawTableRows(int InstanceID, int TableID, double Left,
 double Top, double Height, int FirstRow, int LastRow);

Parameters

TableID A TableID returned by the CreateTable function

Left The horizontal distance from the origin to the left edge of the table

Top The vertical distance from the origin to the top of the table

Height The maximum height available to draw the table in

FirstRow The the number of the first row to draw. Top row is row number 1.

LastRow 0 = All remaining rows
Non-zero = The number of the final row to set

Return values

0 No rows were drawn

Non-zero The total height of all the rows that were drawn onto the page.

DrawText
Text, Page layout

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Draws text on the selected page, using the selected font at the predetermined font size. If no fonts
have been added, then 12 pt Helvetica will automatically be added and selected. The alignment of
the text can be changed with the SetTextAlign function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawText(XPos, YPos: Double;
 Text: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawText(XPos As Double,
 YPos As Double, Text As String) As Long

 DLL

int DPLDrawText(int InstanceID, double XPos, double YPos, wchar_t * Text);

Parameters

XPos The horizontal position of where to draw the text. The reference point is usually to
the left of the first character, unless the SetTextAlign function has been used to
change the alignment.

YPos The vertical position of where to draw the text. The reference point is the text
baseline.

Text The text to draw on the page

DrawTextArc
Text, Page layout

Description

Draws text fitted to an imaginary arc with the specified center point and radius. The text will be
drawn with it's left edge at the requested angle, where 0 degrees is the "12 o'clock" position, and
positive angles are clockwise. The SetTextAlign function can be used to change the alignment of
the text relative to the specified angle.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawTextArc(XPos, YPos, Radius,
 Angle: Double; Text: WideString; DrawOptions: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawTextArc(XPos As Double,
 YPos As Double, Radius As Double, Angle As Double,
 Text As String, DrawOptions As Long) As Long

 DLL

int DPLDrawTextArc(int InstanceID, double XPos, double YPos,
 double Radius, double Angle, wchar_t * Text, int DrawOptions);

Parameters

XPos The horizontal co-ordinate of the center of the arc

YPos The vertical co-ordinate of the center of the arc

Radius The radius of the arc

Angle The angle at which the text should be placed

Text The actual text to draw

DrawOptions 0 = Draw the text outside the arc in a clockwise direction
1 = Draw the text inside the arc in an anti-clockwise direction

Return values

0 The text was blank or the DrawOptions parameter was out of range

1 The text was drawn successfully

DrawTextBox
Text, Page layout

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

This function is similar to the DrawText function, but the text is placed within the bounding box
specified. The vertical alignment can be set using the Options parameter, and the horizontal
alignment can be set with the SetTextAlign function. The text will be word-wrapped to fit inside
the bounding box.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawTextBox(Left, Top, Width,
 Height: Double; Text: WideString; Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawTextBox(Left As Double,
 Top As Double, Width As Double, Height As Double,
 Text As String, Options As Long) As Long

 DLL

int DPLDrawTextBox(int InstanceID, double Left, double Top, double Width,
 double Height, wchar_t * Text, int Options);

Parameters

Left The horizontal co-ordinate of the left edge of the bounding box

Top The vertical co-ordinate of the top edge of the bounding box

Width The width of the bounding box

Height The height of the bounding box

Text The text to draw on the page

Options 0 = Center vertical alignment
1 = Top vertical alignment
2 = Bottom vertical alignment
3 = Center vertical alignment, no wrapping
4 = Top vertical alignment, no wrapping
5 = Bottom vertical alignment, no wrapping

Return values

0 The Options parameter was out of range, or the Width parameter was too small to
contain any text

Non-zero The number of lines of text actually drawn

DrawTextBoxMatrix
Text, Page layout

Version history

This function was introduced in Quick PDF Library version 9.15.

Description

This function is similar to the DrawTextBox function but the position/scaling/rotation is specified
using a transformation matrix.
The vertical alignment can be set using the Options parameter, and the horizontal alignment can be
set with the SetTextAlign function. The text will be word-wrapped to fit inside the bounding box.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawTextBoxMatrix(Width, Height: Double;
 Text: WideString; Options: Integer; M11, M12, M21, M22, MDX,
 MDY: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawTextBoxMatrix(
 Width As Double, Height As Double, Text As String,
 Options As Long, M11 As Double, M12 As Double, M21 As Double,
 M22 As Double, MDX As Double, MDY As Double) As Long

 DLL

int DPLDrawTextBoxMatrix(int InstanceID, double Width, double Height,
 wchar_t * Text, int Options, double M11, double M12,
 double M21, double M22, double MDX, double MDY);

Parameters

Width The width of the bounding box

Height The height of the bounding box

Text The text to draw on the page

Options 0 = Center vertical alignment
1 = Top vertical alignment
2 = Bottom vertical alignment
3 = Center vertical alignment, no wrapping
4 = Top vertical alignment, no wrapping
5 = Bottom vertical alignment, no wrapping

M11 Matrix component

M12 Matrix component

M21 Matrix component

M22 Matrix component

MDX Matrix component

MDY Matrix component

Return values

0 The Options parameter was out of range, or the Width parameter was too small to
contain any text

Non-zero The number of lines of text actually drawn

DrawWrappedText
Text, Page layout

Description

Draw text which is wrapped to a certain width. The SetTextAlign function can be used to change
the alignment of the text. The SetBreakString function can be used to set the delimiter for the
linebreak. The default is CR / LF pair. On some systems a LF may be default.

Syntax

 Delphi

function TDebenuPDFLibrary1113.DrawWrappedText(XPos, YPos, Width: Double;
 Text: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::DrawWrappedText(XPos As Double,
 YPos As Double, Width As Double, Text As String) As Long

 DLL

int DPLDrawWrappedText(int InstanceID, double XPos, double YPos,
 double Width, wchar_t * Text);

Parameters

XPos The left edge of the text block

YPos The baseline of the first line of text

Width The width of the text block

Text The text to draw

EditableContentStream
Content Streams and Optional Content Groups

Version history

This function was renamed in Quick PDF Library version 8.11.
The function name in earlier versions was EditableLayer.

Description

Use this function to determine if the content stream part that was selected with the
SelectContentStream function can be drawn on.

Syntax

 Delphi

function TDebenuPDFLibrary1113.EditableContentStream: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::EditableContentStream As Long

 DLL

int DPLEditableContentStream(int InstanceID);

Return values

0 The selected content stream part cannot be drawn on

1 The selected content stream part is editable

EmbedFile
Document properties

Description

Embeds a file into the PDF document and creates a file attachment link to the embedded file. The
file can then be accessed in Acrobat under the File Attachments function.
This is equivalent to calling AddEmbeddedFile followed by AddFileAttachment.

Syntax

 Delphi

function TDebenuPDFLibrary1113.EmbedFile(Title, FileName,
 MIMEType: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::EmbedFile(Title As String,
 FileName As String, MIMEType As String) As Long

 DLL

int DPLEmbedFile(int InstanceID, wchar_t * Title, wchar_t * FileName,
 wchar_t * MIMEType);

Parameters

Title A unique title for this file. No two files can have the same title. If a file with this
title already exists in the document the new file will not be embedded.

FileName The full path and name of the file to embed.

MIMEType The optional MIME type of the file, for example "image/jpg" for a JPEG image. See
http://www.iana.org/assignments/media-types/ for a full list of MIME types. If the
MIME type is not known it can be set to an empty string.

Return values

0 The file could not be embedded

1 The file was embedded successfully

EmbeddedFileCount
Document properties

Version history

This function was introduced in Quick PDF Library version 7.13.

Description

Returns the number of embedded files in the document.
This total only includes embedded files that are listed as file attachments and does not include
embedded files that are only referenced by a link annotation.

Syntax

 Delphi

function TDebenuPDFLibrary1113.EmbeddedFileCount: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::EmbeddedFileCount As Long

 DLL

int DPLEmbeddedFileCount(int InstanceID);

EncapsulateContentStream
Content Streams and Optional Content Groups

Version history

This function was renamed in Quick PDF Library version 8.11.
The function name in earlier versions was EncapsulateLayer.

Description

A page in a PDF document has one or more content stream parts that together contain all the PDF
page description commands for the page.
This function combines the content stream parts and surrounds the content stream with "save
graphics state" and "restore graphics state" operators. This has the effect of clearing the current
clipping path.
Some pages may contain unbalanced "save graphics state" and "restore graphics state" operators.
The BalanceContentStream function can be used to repair such pages.

Syntax

 Delphi

function TDebenuPDFLibrary1113.EncapsulateContentStream: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::EncapsulateContentStream As Long

 DLL

int DPLEncapsulateContentStream(int InstanceID);

EncodePermissions
Security and Signatures

Version history

This function was renamed in Quick PDF Library version 7.11.
The function name in earlier versions was Permissions.

Description

Create a value for the Permissions parameter of the Encrypt function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.EncodePermissions(CanPrint, CanCopy,
 CanChange, CanAddNotes, CanFillFields, CanCopyAccess, CanAssemble,
 CanPrintFull: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::EncodePermissions(
 CanPrint As Long, CanCopy As Long, CanChange As Long,
 CanAddNotes As Long, CanFillFields As Long,
 CanCopyAccess As Long, CanAssemble As Long,
 CanPrintFull As Long) As Long

 DLL

int DPLEncodePermissions(int InstanceID, int CanPrint, int CanCopy,
 int CanChange, int CanAddNotes, int CanFillFields,
 int CanCopyAccess, int CanAssemble, int CanPrintFull);

Parameters

CanPrint Set this to 1 to allow the user to print the document

CanCopy Set this to 1 to allow the user to copy text and graphics from the document

CanChange Set this to 1 to allow the user to edit the document

CanAddNotes Set this to 1 to allow the user to add annotations

CanFillFields Set this to 1 to allow the user to fill in form fields. Only works with 128-bit
encryption.

CanCopyAccess Set this to 1 to enable copying for use with accessibility features. Only works
with 128-bit encryption.

CanAssemble Set this to 1 to allow the user to assemble the document. Only works with
128-bit encryption.

CanPrintFull Set this to 0 to force low-resolution printing of the document only. This
prevents the document from being distilled into a new PDF document. Only
works with 128-bit encryption.

Return values

Result is a 32-bit encoded number which should be passed to the Encrypt
function

EncodeStringFromVariant
Text, Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 7.18.

Description

This function is used to encode a string in UTF-16LE format from an array of numbers stored as a
Variant type.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::EncodeStringFromVariant(
 NumberList As Variant, Encoding As String,
 UnmatchedAction As Long) As String

Parameters

NumberList A variant array of numbers. The numbers in the array can be stored in
any ordinal variant type (signed or unsigned integers from 8 to 32 bits).

Encoding A string that defines how numbers in the array should be mapped to
character codes:
"Unicode" = The numbers represent Unicode code points with values
ranging from 0x0000 to 0x10FFFD.
"UTF-8" = The numbers represent the bytes of Unicode code points
encoded using the variable-length UTF-8 encoding scheme with values
ranging from 0 to 244.
"UTF-16" = The numbers represent the 16-bit values of Unicode code
points encoded using the variable-length UTF-16 encoding scheme with
values ranging from 0 to 65533. Unicode values from U+010000 to
U+10FFFD are represented by a surrogate pair consisting of a sequence
of two numbers.
"UTF-16LE" = The numbers represent the bytes of the UTF-16 encoding
scheme stored in little-endian format with values ranging from 0 to 255.
"UTF-16BE" = The numbers represent the bytes of the UTF-16 encoding
scheme stored in big-endian format with values ranging from 0 to 255.
"CP932" = The numbers represent either individual bytes or a
combination of 8-bit and 16-bit values from Microsoft code page 932 (an
extension of Shift JIS encoding). Double-byte values can be presented as
a 16-bit number or as two 8-bit numbers.
For encodings where numbers represent bytes this function will cast
signed 8-bit values to unsigned 8-bit values.

UnmatchedAction Specifies how to handle numbers that are out of range or that map to
invalid character codes:
0 = Unmatched characters are ignored
1 = Unmatched characters are replaced with the Unicode U+FFFD
replacement character

Encrypt
Security and Signatures

Description

This function adds the specified security settings to the selected document.
From Quick PDF Library 8.11, the actual encryption of the document is delayed until the document
is saved so this function can be called at any time, even before further content is added to the
document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.Encrypt(Owner, User: WideString; Strength,
 Permissions: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::Encrypt(Owner As String,
 User As String, Strength As Long, Permissions As Long) As Long

 DLL

int DPLEncrypt(int InstanceID, wchar_t * Owner, wchar_t * User,
 int Strength, int Permissions);

Parameters

Owner The owner or master password for the document

User The user password for the document

Strength The strength of encryption to use:
0 = 40-bit encryption
1 = 128-bit RC4 encryption
2 = 128-bit AES encryption (requires Acrobat 7 or later)
3 = 256-bit AES encryption (requires Acrobat 9 or later)
4 = 256-bit AES encryption (requires Acrobat X or later)

Permissions A value created with the EncodePermissions function

Return values

0 The document could not be encrypted. Use the LastErrorCode function to
determine the reason for failure.

1 The document was encrypted successfully

EncryptFile
Security and Signatures

Description

Encrypts a file on disk and saves the results to a new file. The entire document does not have to be
loaded into memory so this function can be used to encrypt huge documents.

Syntax

 Delphi

function TDebenuPDFLibrary1113.EncryptFile(InputFileName, OutputFileName,
 Owner, User: WideString; Strength, Permissions: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::EncryptFile(
 InputFileName As String, OutputFileName As String,
 Owner As String, User As String, Strength As Long,
 Permissions As Long) As Long

 DLL

int DPLEncryptFile(int InstanceID, wchar_t * InputFileName,
 wchar_t * OutputFileName, wchar_t * Owner, wchar_t * User,
 int Strength, int Permissions);

Parameters

InputFileName The name of the file to encrypt.

OutputFileName The name of the destination file to create.

Owner The owner password to use for the encrypted file. This is sometimes called
the "master" password or the "permissions" password. This password will
be needed to change the document.

User The user password to use for the encrypted file. This is sometimes called
the "open" password, it will allow the user to open the document but not to
use the document in ways not permitted.

Strength The strength of encryption to use:
0 = 40-bit RC4 encryption
1 = 128-bit RC4 encryption
2 = 128-bit AES encryption (requires Acrobat 7 or later)
3 = 256-bit AES encryption (requires Acrobat 9 or later)
4 = 256-bit AES encryption (requires Acorbat X or later)

Permissions A value created with the EncodePermissions function

Return values

0 The file could not be encrypted. Check the result of the LastErrorCode
function to determine the cause of the failure.

1 The document was encrypted successfully

EncryptWithFingerprint
Security and Signatures

Description

Encrypts the selected document using the encryption "fingerprint" obtained from another document
using the GetEncryptionFingerprint function. The selected document will be encrypted with the
same owner and user passwords as the document the fingerprint was taken from.

Syntax

 Delphi

function TDebenuPDFLibrary1113.EncryptWithFingerprint(
 Fingerprint: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::EncryptWithFingerprint(
 Fingerprint As String) As Long

 DLL

int DPLEncryptWithFingerprint(int InstanceID, wchar_t * Fingerprint);

Parameters

Fingerprint A fingerprint returned by the GetEncryptionFingerprint function

Return values

0 The fingerprint was invalid or the document was already encrypted

1 The document was successfully encrypted using the supplied fingerprint

EncryptionAlgorithm
Document properties, Security and Signatures

Version history

This function was introduced in Quick PDF Library version 7.11.

Description

Returns the encryption algorithm used to encrypt the selected document.
The EncryptionStrength function can be used to determine the encryption key length.

Syntax

 Delphi

function TDebenuPDFLibrary1113.EncryptionAlgorithm: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::EncryptionAlgorithm As Long

 DLL

int DPLEncryptionAlgorithm(int InstanceID);

Return values

0 The document is not encrypted

1 The document is encrypted using RC4 encryption

2 The document is encrypted using AES encryption

EncryptionStatus
Document properties, Security and Signatures

Version history

This function was renamed in Quick PDF Library version 7.11.
The function name in earlier versions was Encrypted.

Description

Determines the encryption status of the selected document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.EncryptionStatus: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::EncryptionStatus As Long

 DLL

int DPLEncryptionStatus(int InstanceID);

Return values

0 The selected document is not encrypted

1 The document is encrypted with Adobe "Standard" encryption

2 The document is encrypted with an unknown encryption

EncryptionStrength
Document properties, Security and Signatures

Description

If the selected document has been encrypted this function returns the encryption strength. This is
the length of the key used to encrypt the contents of the document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.EncryptionStrength: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::EncryptionStrength As Long

 DLL

int DPLEncryptionStrength(int InstanceID);

Return values

0 The selected document is not encrypted

40 The document has been encrypted with 40-bit encryption (Adobe Acrobat 3.x and
4.x)

128 The document has been encrypted with 128-bit encryption (Adobe Acrobat 5.x)

256 The document has been encrypted with 256-bit encryption (Acrobat 9 or Acrobat
10). Use the SecurityInfo function to determine which version of encryption was
used.

EndPageUpdate
Page layout

Version history

This function was introduced in Quick PDF Library version 7.12.

Description

For detailed page layouts the BeginPageUpdate function can be called before a group of drawing
commands. The page layout commands will then be buffered until a matching call to this function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.EndPageUpdate: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::EndPageUpdate As Long

 DLL

int DPLEndPageUpdate(int InstanceID);

EndSignProcessToFile
Security and Signatures

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Completes a digital signature process and writes the signed document to a file.
The result returned by EndSignProcessToFile will always be zero. To check the result of the digital
signature signing process call the GetSignProcessResult function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.EndSignProcessToFile(
 SignProcessID: Integer; OutputFile: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::EndSignProcessToFile(
 SignProcessID As Long, OutputFile As String) As Long

 DLL

int DPLEndSignProcessToFile(int InstanceID, int SignProcessID,
 wchar_t * OutputFile);

Parameters

SignProcessID A value returned by the NewSignProcessFromFile,
NewSignProcessFromStream or NewSignProcessFromString functions.

OutputFile The path and name of the file to save the signed PDF to.

EndSignProcessToStream
Security and Signatures

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Completes a digital signature process and writes the signed document to a TStream.
The result returned by EndSignProcessToStream will always be zero. To check the result of the
digital signature signing process call the GetSignProcessResult function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.EndSignProcessToStream(
 SignProcessID: Integer; OutputStream: TStream): Integer;

Parameters

SignProcessID A value returned by the NewSignProcessFromFile,
NewSignProcessFromStream or NewSignProcessFromString functions.

OutputStream The TStream object to write the signed PDF to.

EndSignProcessToString
Security and Signatures

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Completes a digital signature process and returns the signed document as a string of 8-bit bytes.
The result returned by EndSignProcessToString will always be zero. To check the result of the
digital signature signing process call the GetSignProcessResult function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.EndSignProcessToString(
 SignProcessID: Integer): AnsiString;

 DLL

char * DPLEndSignProcessToString(int InstanceID, int SignProcessID);

Parameters

SignProcessID A value returned by the NewSignProcessFromFile,
NewSignProcessFromStream or NewSignProcessFromString functions.

ExtractFilePageContentToString
Extraction, Page manipulation

Version history

This function was renamed in Quick PDF Library version 8.11.
The function name in earlier versions was ExtractFilePageContent.

Description

Retrieves the page description operators that define the layout of any page in a PDF document.
This function does not load the entire file into memory so it can be used with arbitrarily large
documents.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ExtractFilePageContentToString(
 InputFileName, Password: WideString; Page: Integer): AnsiString;

 DLL

char * DPLExtractFilePageContentToString(int InstanceID,
 wchar_t * InputFileName, wchar_t * Password, int Page);

Parameters

InputFileName The path and file name of the file to extract page content from.

Password The password to use when opening the file

Page The number of the page to extract. The first page in the document is page 1.

ExtractFilePageContentToVariant
Extraction, Page manipulation

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Retrieves the page description operators that define the layout of any page in a PDF document as a
variant byte array. This function does not load the entire file into memory so it can be used with
arbitrarily large documents.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ExtractFilePageContentToVariant(
 InputFileName As String, Password As String,
 Page As Long) As Variant

Parameters

InputFileName The path and file name of the file to extract page content from.

Password The password to use when opening the file

Page The number of the page to extract. The first page in the document is page 1.

ExtractFilePageText
Extraction, Page properties

Description

Extracts the text of any page in a PDF file.
This function internally uses the direct access functionality. The entire file is not loaded into
memory, so this function can be used on arbitrarily large documents.
Two different methods are provided for extracting text from the selected page in a variety of
output formats.
The DASetTextExtractionWordGap, DASetTextExtractionOptions and
DASetTextExtractionArea functions can be used to adjust the text extraction process.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ExtractFilePageText(InputFileName,
 Password: WideString; Page, Options: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ExtractFilePageText(
 InputFileName As String, Password As String, Page As Long,
 Options As Long) As String

 DLL

wchar_t * DPLExtractFilePageText(int InstanceID, wchar_t * InputFileName,
 wchar_t * Password, int Page, int Options);

Parameters

InputFileName The path and file name of the file to extract text from.

Password The password to use, if any, when opening the file

Page The number of the page that must be extracts. The first page in the
document is page 1.

Options Using the standard text extraction algorithm:
0 = Extract text in human readable format
1 = Deprecated
2 = Return a CSV string including font, color, size and position of each piece
of text on the page
Using the more accurate but slower text extraction algorithm:
3 = Return a CSV string for each piece of text on the page with the following
format:
Font Name, Text Color, Text Size, X1, Y1, X2, Y2, X3, Y3, X4, Y4, Text
The co-ordinates are the four points bounding the text, measured using the
units set with the SetMeasurementUnits function and the origin set with
the SetOrigin function. Co-ordinate order is anti-clockwise with the bottom
left corner first.
4 = Similar to option 3, but individual words are returned, making searching
for words easier
5 = Similar to option 3 but character widths are output after each block of
text
6 = Similar to option 4 but character widths are output after each line of text
7 = Extract text in human readable format with improved accuracy compared
to option 0
8 = Similar output format as option 0 but using the more accurate algorithm.
Returns unformatted lines.

ExtractFilePageTextBlocks
Text, Extraction, Page properties

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Similar to the ExtractFilePageText function but the results are stored in a text block list rather
than returned as a CSV string.
This function internally uses the direct access functionality.
Once the results are in the text block list, functions such as DAGetTextBlockCount,
DAGetTextBlockText and DAGetTextBlockColor can be used to retrieve the properties of each
block of text.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ExtractFilePageTextBlocks(InputFileName,
 Password: WideString; Page, Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ExtractFilePageTextBlocks(
 InputFileName As String, Password As String, Page As Long,
 Options As Long) As Long

 DLL

int DPLExtractFilePageTextBlocks(int InstanceID, wchar_t * InputFileName,
 wchar_t * Password, int Page, int Options);

Parameters

InputFileName The path and file name of the file to extract text from.

Password The password to use, if any, when opening the file

Page The number of the page that must be extracts. The first page in the
document is page 1.

Options 3 = Normal extraction
4 = Split words

Return values

0 The text could not be extracted

1 A TextBlockListID value

ExtractFilePages
Document manipulation, Extraction, Page manipulation

Description

Extracts ranges of pages from a PDF document on disk and places the extracted pages into a new
PDF document.
The ExtractFilePagesEx function (introduced in version 9.14) is able to produce smaller output
files using a cross reference stream instead of a cross reference table.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ExtractFilePages(InputFileName, Password,
 OutputFileName, RangeList: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ExtractFilePages(
 InputFileName As String, Password As String,
 OutputFileName As String, RangeList As String) As Long

 DLL

int DPLExtractFilePages(int InstanceID, wchar_t * InputFileName,
 wchar_t * Password, wchar_t * OutputFileName,
 wchar_t * RangeList);

Parameters

InputFileName The path and name of the document that contains the pages to extract.

Password The password to use when opening the document

OutputFileName The path and name of the document to create containing the extracted
pages.

RangeList The pages to extract, for example "10,15,18-20,25-35". Invalid characters
will be ignored. Reversed page ranges such as "5-1" will be accepted.
Duplicate page numbers will be accepted but if a change is made to such a
page the same changes will appear on the duplicate pages. The list of
pages will not be sorted so the resulting document will have the pages in
the specified order.

Return values

0 The pages could not be extracted. Use the LastErrorCode function to
determine the cause of the failure.

1 The pages were extracted successfully

ExtractFilePagesEx
Document manipulation, Extraction, Page manipulation

Version history

This function was introduced in Quick PDF Library version 9.14.

Description

Similar to the ExtractFilePages function but is able to generate smaller output files using cross
reference streams rather than a cross reference table.
Options can be logically OR'd to together to invoke multiple options.
For example Options = 3 (1 + 2) will Use a cross reference stream (smaller output file size)
and also Remove all AcroForm and XFA based FormFields as well as Usage Rights

Syntax

 Delphi

function TDebenuPDFLibrary1113.ExtractFilePagesEx(InputFileName, Password,
 OutputFileName, RangeList: WideString; Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ExtractFilePagesEx(
 InputFileName As String, Password As String,
 OutputFileName As String, RangeList As String,
 Options As Long) As Long

 DLL

int DPLExtractFilePagesEx(int InstanceID, wchar_t * InputFileName,
 wchar_t * Password, wchar_t * OutputFileName,
 wchar_t * RangeList, int Options);

Parameters

InputFileName The path and name of the document that contains the pages to extract.

Password The password to use when opening the document.

OutputFileName The path and name of the document to create containing the extracted
pages.

RangeList The pages to extract, for example "10,15,18-20,25-35". Invalid characters
will be ignored. Reversed page ranges such as "5-1" will be accepted.
Duplicate page numbers will be accepted but if a change is made to such a
page the same changes will appear on the duplicate pages. The list of
pages will not be sorted so the resulting document will have the pages in
the specified order.

Options 0 = Use a cross reference table
1 = Use a cross reference stream (smaller output file size)
2 = Remove all AcroForm and XFA based FormFields as well as Usage
Rights

Return values

0 The pages could not be extracted. Use the LastErrorCode function to
determine the cause of the failure.

1 The pages were extracted successfully

ExtractPageRanges
Document manipulation, Extraction, Page manipulation

Description

Use this function to extract one or more non-consecutive pages from a document to a new
document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ExtractPageRanges(
 RangeList: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ExtractPageRanges(
 RangeList As String) As Long

 DLL

int DPLExtractPageRanges(int InstanceID, wchar_t * RangeList);

Parameters

RangeList The pages to extract, for example "10,15,18-20,25-35". Invalid characters and
duplicate page numbers in the string will be ignored. Reversed page ranges such
as "5-1" will be accepted. The list of pages will be sorted resulting in the pages
being extracted in numerical order.

Return values

0 The page extraction did not succeed. The original document remains as the
selected document.

1 The page extraction was successful. The new document containing the selected
pages is now the selected document.

ExtractPageTextBlocks
Text, Extraction

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Similar to the GetPageText function but the results are stored in a text block list rather than
returned as a CSV string.
Once the results are in the text block list, functions such as GetTextBlockCount,
GetTextBlockText and GetTextBlockColor can be used to retrieve the properties of each block
of text.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ExtractPageTextBlocks(
 ExtractOptions: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ExtractPageTextBlocks(
 ExtractOptions As Long) As Long

 DLL

int DPLExtractPageTextBlocks(int InstanceID, int ExtractOptions);

Parameters

ExtractOptions 3 = Normal extraction
4 = Split words

Return values

0 The text could not be extracted

Non-zero A TextBlockListID value

ExtractPages
Extraction, Page manipulation

Description

Copies the selected document to a new document, but retains only the specified pages.
If successful, the new document will be selected and the original document will be removed from
memory.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ExtractPages(StartPage,
 PageCount: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ExtractPages(StartPage As Long,
 PageCount As Long) As Long

 DLL

int DPLExtractPages(int InstanceID, int StartPage, int PageCount);

Parameters

StartPage The page number of the first page to extract

PageCount The total number of pages to extract

Return values

0 Failed, use LastErrorCode for further details

1 Success

FileListCount
Miscellaneous functions

Description

Returns the number of items in the specified file list.

Syntax

 Delphi

function TDebenuPDFLibrary1113.FileListCount(
 ListName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::FileListCount(
 ListName As String) As Long

 DLL

int DPLFileListCount(int InstanceID, wchar_t * ListName);

Parameters

ListName The name of the file list

FileListItem
Miscellaneous functions

Description

Returns the file name stored at the specified index in the named list.

Syntax

 Delphi

function TDebenuPDFLibrary1113.FileListItem(ListName: WideString;
 Index: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::FileListItem(ListName As String,
 Index As Long) As String

 DLL

wchar_t * DPLFileListItem(int InstanceID, wchar_t * ListName, int Index);

Parameters

ListName The name of the list to work with

Index The index of the file name to retrieve. The first item has an index of 1.

FindFonts
Fonts, Document properties

Description

Analyses the selected document and finds all available fonts. The number of found fonts is
returned. Calling this function a second time will return zero as all relevant fonts were found the
first time the function was called. These fonts are then available in conjunction to the fonts added
with the Add*Font functions and will also be counted in subsequent calls to the FontCount
function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.FindFonts: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::FindFonts As Long

 DLL

int DPLFindFonts(int InstanceID);

Return values

0 No fonts were found in the document

Non-zero The number of fonts that were found

FindFormFieldByTitle
Form fields

Description

Finds the index of the form field with the specified title.

Syntax

 Delphi

function TDebenuPDFLibrary1113.FindFormFieldByTitle(
 Title: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::FindFormFieldByTitle(
 Title As String) As Long

 DLL

int DPLFindFormFieldByTitle(int InstanceID, wchar_t * Title);

Parameters

Title The title of the form field to find.

Return values

0 The form field could not be found

Non-zero The Index of the form field with the specified title

FindImages
Image handling, Document properties

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Searches the selected document for embedded images. This functions searches for image in the
Resources dictionary for the entire document. It cannot report where the image was drawn or even
if it was drawn at all.
To get the location and number of images draw for each page you will need to use the
GetPageImageList and related functions.
This function returns the number of images found.

Syntax

 Delphi

function TDebenuPDFLibrary1113.FindImages: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::FindImages As Long

 DLL

int DPLFindImages(int InstanceID);

Return values

0 No images were found

1-n Number of images found

FitImage
Image handling, Page layout

Description

This function allows an image to be placed into an area on the page. The aspect ratio of the image
is preserved, and the alignment and rotation of the image can be specified.

Syntax

 Delphi

function TDebenuPDFLibrary1113.FitImage(Left, Top, Width, Height: Double;
 HAlign, VAlign, Rotate: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::FitImage(Left As Double,
 Top As Double, Width As Double, Height As Double,
 HAlign As Long, VAlign As Long, Rotate As Long) As Long

 DLL

int DPLFitImage(int InstanceID, double Left, double Top, double Width,
 double Height, int HAlign, int VAlign, int Rotate);

Parameters

Left The horizontal co-ordinate of the left-edge of the bounding box

Top The vertical co-ordinate of the top-edge of the bounding box

Width The width of the bounding box

Height The height of the bounding box

HAlign Horizontal alignment of the image within the bounding box:
0 = Left
1 = Center
2 = Right

VAlign Vertical alignment of the image within the bounding box:
0 = Top
1 = Center
2 = Bottom

Rotate The rotation of the image:
0 = Normal
1 = 90 degrees anti-clockwise
2 = 90 degrees clockwise
3 = 180 degrees

Return values

0 The image could not be drawn. Either a valid image has not been selected or the
HAlign, VAlign or Rotate parameters are out of range.

1 The image was drawn successfully

FitRotatedTextBox
Text, Page layout

Description

Similar to the FitTextBox function, but the angle of the box can be rotated by any angle. The text
size is adjusted to ensure that all the text fits into the available space. The top-left corner of the
box before it is rotated is used as the rotation point.

Syntax

 Delphi

function TDebenuPDFLibrary1113.FitRotatedTextBox(Left, Top, Width, Height,
 Angle: Double; Text: WideString; Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::FitRotatedTextBox(
 Left As Double, Top As Double, Width As Double,
 Height As Double, Angle As Double, Text As String,
 Options As Long) As Long

 DLL

int DPLFitRotatedTextBox(int InstanceID, double Left, double Top,
 double Width, double Height, double Angle, wchar_t * Text,
 int Options);

Parameters

Left The horizontal co-ordinate of the top-left corner of the box before it is rotated

Top The vertical co-ordinate of the top-left corner of the box before it is rotated

Width The width of the box before it is rotated

Height The height of the box before it is rotated

Angle The angle in degrees that the box should be rotated by. A positive angle rotates the
box in an anti-clockwise direction, a negative angle rotated the box in a clockwise
direction.

Text The text that will be fitted into the box

Options Vertical alignment:
0 = Centered
1 = Top
2 = Bottom
If 100 is added to these values long words will not be split up, the font size will be
reduced until the longest word fits into the available width.
If 1000 is addd to these values the font size will be allowed to increase until the text
fills the available area.

Return values

0 The Options parameter was out of range

1 The rotated text box was drawn successfully

FitTextBox
Text, Page layout

Description

Similar to the DrawText function, but the text size is adjusted to ensure that all the text fits into
the available space.

Syntax

 Delphi

function TDebenuPDFLibrary1113.FitTextBox(Left, Top, Width,
 Height: Double; Text: WideString; Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::FitTextBox(Left As Double,
 Top As Double, Width As Double, Height As Double,
 Text As String, Options As Long) As Long

 DLL

int DPLFitTextBox(int InstanceID, double Left, double Top, double Width,
 double Height, wchar_t * Text, int Options);

Parameters

Left The horizontal co-ordinate of the left edge of the bounding box

Top The vertical co-ordinate of the top edge of the bounding box

Width The width of the bounding box

Height The height of the bounding box

Text The text to display in the box

Options Vertical alignment:
0 = Centered
1 = Top
2 = Bottom
If 100 is added to these values long words will not be split up, the font size will be
reduced until the longest word fits into the available width.
If 1000 is addd to these values the font size will be allowed to increase until the text
fills the available area.

Return values

0 The Options specified were out of range

1 The text was drawn successfully

FlattenAnnot
Annotations and hotspot links, Page layout

Version history

This function was introduced in Quick PDF Library version 9.14.

Description

Flattens the specified annotation by merging the appearance stream with the selected page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.FlattenAnnot(Index,
 Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::FlattenAnnot(Index As Long,
 Options As Long) As Long

 DLL

int DPLFlattenAnnot(int InstanceID, int Index, int Options);

Parameters

Index The index of the annotation. The first annotation on the page has an index of 1.

Options This parameter is reserved for future use and should always be set to zero.

Return values

0 The specified annotation could not be flattened

1 Success

FlattenFormField
Form fields, Page layout

Description

Use this function to draw the visual appearance onto the page it is associated with. The form field
will then be removed from the document and only it's appearance will remain - it will no longer be
an interactive field.
If the field is flattened successfully the field index of subsequent form fields will be decreased by 1.
From version 9.11 this function no longer updates the form field's appearance stream before
flattening. To update the appearance stream before flattening, use the
UpdateAndFlattenFormField function or call UpdateAppearanceStream followed by a call to
this function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.FlattenFormField(Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::FlattenFormField(
 Index As Long) As Long

 DLL

int DPLFlattenFormField(int InstanceID, int Index);

Parameters

Index The index of the form field to work with. The first form field has an index of 1.

Return values

0 The form field could not be found or it was not possible to flatten the form field

1 The form field was flattened successfully

FontCount
Fonts

Description

Returns the total number of fonts added to the PDF file. This function does not take into account
the fonts that may have already been in an existing PDF document which was loaded with the
LoadFromFile function unless the FindFonts function has been called.

Syntax

 Delphi

function TDebenuPDFLibrary1113.FontCount: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::FontCount As Long

 DLL

int DPLFontCount(int InstanceID);

Return values

0 No fonts have been added to the document or FindFonts has not found any fonts
in an existing document.

Non-zero The number of fonts added to the PDF plus the number of fonts found with
FindFonts.

FontFamily
Fonts

Version history

This function was introduced in Quick PDF Library version 7.16.

Description

Returns the font family of the selected font, if available.

Syntax

 Delphi

function TDebenuPDFLibrary1113.FontFamily: WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::FontFamily As String

 DLL

wchar_t * DPLFontFamily(int InstanceID);

FontHasKerning
Text, Fonts

Description

Indicated whether the selected font has kerning information.

Syntax

 Delphi

function TDebenuPDFLibrary1113.FontHasKerning: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::FontHasKerning As Long

 DLL

int DPLFontHasKerning(int InstanceID);

Return values

0 The selected font does not have any kerning information

1 The selected font has at least one kerning pair

FontName
Fonts

Description

Returns the name of the selected font. A font is automatically selected when it is added to the
document. The GetFontID and SelectFont functions can be used to select a different font.

Syntax

 Delphi

function TDebenuPDFLibrary1113.FontName: WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::FontName As String

 DLL

wchar_t * DPLFontName(int InstanceID);

FontReference
Fonts

Description

Returns the internal reference of the selected font.

Syntax

 Delphi

function TDebenuPDFLibrary1113.FontReference: WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::FontReference As String

 DLL

wchar_t * DPLFontReference(int InstanceID);

FontSize
Text, Fonts

Description

Returns the size in bytes of the selected font. A value will only be returned for embedded TrueType
or Type1 fonts. A value will not be returned for subsetted fonts or standard fonts.

Syntax

 Delphi

function TDebenuPDFLibrary1113.FontSize: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::FontSize As Long

 DLL

int DPLFontSize(int InstanceID);

FontType
Fonts

Description

Used to determine the type of the selected font.

Syntax

 Delphi

function TDebenuPDFLibrary1113.FontType: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::FontType As Long

 DLL

int DPLFontType(int InstanceID);

Return values

0 No font has been selected

1 Unknown

2 Standard

3 TrueType

4 Embedded TrueType

5 Packaged

6 Type1

7 Subsetted

8 Type3

9 Type1 CID

10 TrueType CID

11 CJK

FormFieldCount
Form fields

Description

Returns the total number of form fields in the selected document. The Index parameter of the
various form field functions must be a number from 1 to the value returned by this function.
If a form field is deleted or flattened successfully it will be removed from the document, the total
field count will be reduced and the field Index of the subsequent fields will be reduced by 1.

Syntax

 Delphi

function TDebenuPDFLibrary1113.FormFieldCount: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::FormFieldCount As Long

 DLL

int DPLFormFieldCount(int InstanceID);

Return values

0 There are no form fields

Non-zero The number of form fields in the document

FormFieldHasParent
Form fields

Description

This function returns 1 if the specified form field is the child of another field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.FormFieldHasParent(Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::FormFieldHasParent(
 Index As Long) As Long

 DLL

int DPLFormFieldHasParent(int InstanceID, int Index);

Parameters

Index The index of the form field. The first field has an index of 1.

FormFieldJavaScriptAction
Form fields, JavaScript

Description

Adds JavaScript to a form field for any of the possible action types.

Syntax

 Delphi

function TDebenuPDFLibrary1113.FormFieldJavaScriptAction(Index: Integer;
 ActionType, JavaScript: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::FormFieldJavaScriptAction(
 Index As Long, ActionType As String,
 JavaScript As String) As Long

 DLL

int DPLFormFieldJavaScriptAction(int InstanceID, int Index,
 wchar_t * ActionType, wchar_t * JavaScript);

Parameters

Index Index of the form field

ActionType The action type:
E = An action to be performed when the cursor enters the annotation's active
area
X = An action to be performed when the cursor exits the annotation's active area
D = An action to be performed when the mouse button is pressed inside the
annotation's active area
U = An action to be performed when the mouse button is released inside the
annotation's active area
Fo = An action to be performed when the annotation receives the input focus
Bl = An action to be performed when the annotation loses the input focus
(blurred)
K = An action to be performed when the user types a keystroke into a text field
or combo box or modifies the selection in a scrollable list box. This allows the
keystroke to be checked for validity and rejected or modified.
F = An action to be performed before the field is formatted to display its current
value. This allows the field's value to be modified before formatting.
V = An action to be performed when the field's value is changed. This allows the
new value to be checked for validity.
C = An action to be performed in order to recalculate the value of this field when
that of another field changes

JavaScript The JavaScript to execute.

Return values

0 Cannot find the form field

1 The JavaScript action was added to the form field successfully

FormFieldWebLinkAction
Form fields

Description

Adds an action to the specified form field that links to an internet address.

Syntax

 Delphi

function TDebenuPDFLibrary1113.FormFieldWebLinkAction(Index: Integer;
 ActionType, Link: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::FormFieldWebLinkAction(
 Index As Long, ActionType As String, Link As String) As Long

 DLL

int DPLFormFieldWebLinkAction(int InstanceID, int Index,
 wchar_t * ActionType, wchar_t * Link);

Parameters

Index The index of the form field to set the action of

ActionType The action type:
E = An action to be performed when the cursor enters the annotation's active
area
X = An action to be performed when the cursor exits the annotation's active area
D = An action to be performed when the mouse button is pressed inside the
annotation's active area
U = An action to be performed when the mouse button is released inside the
annotation's active area
Fo = An action to be performed when the annotation receives the input focus
Bl = An action to be performed when the annotation loses the input focus
(blurred)
K = An action to be performed when the user types a keystroke into a text field
or combo box or modifies the selection in a scrollable list box. This allows the
keystroke to be checked for validity and rejected or modified.
F = An action to be performed before the field is formatted to display its current
value. This allows the field's value to be modified before formatting.
V = An action to be performed when the field's value is changed. This allows the
new value to be checked for validity.
C = An action to be performed in order to recalculate the value of this field when
that of another field changes

Link The URL to link to. Some examples:
"http://www.example.com"
"mailto:info@example.com"

Return values

0 The form field could not be found, or the ActionType was invalid

1 The web link action was added to the form field successfully

GetActionDest
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

This function will return a DestID if the specified action has a destination entry. The DestID can be
used with the GetDestPage, GetDestType and GetDestValue functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetActionDest(ActionID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetActionDest(
 ActionID As Long) As Long

 DLL

int DPLGetActionDest(int InstanceID, int ActionID);

Parameters

ActionID An ActionID as returned by the GetAnnotActionID, GetOutlineActionID or
GetFormFieldActionID functions

Return values

0 The specified action does not have a destination entry

Non-zero A DestID that can be used with the destination functions.

GetActionType
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 7.16.

Description

Returns the action type of the specified action, for example "GoTo" or "GoToR".

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetActionType(
 ActionID: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetActionType(
 ActionID As Long) As String

 DLL

wchar_t * DPLGetActionType(int InstanceID, int ActionID);

Parameters

ActionID An ActionID as returned by the GetAnnotActionID, GetOutlineActionID or
GetFormFieldActionID functions

GetActionURL
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

Returns the target URL of the specified action.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetActionURL(ActionID: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetActionURL(
 ActionID As Long) As String

 DLL

wchar_t * DPLGetActionURL(int InstanceID, int ActionID);

Parameters

ActionID An ActionID as returned by the GetAnnotActionID, GetOutlineActionID or
GetFormFieldActionID functions

GetAnalysisInfo
Document properties

Description

Returns individual items from the results of the analysis done by the AnalyseFile function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetAnalysisInfo(AnalysisID,
 AnalysisItem: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetAnalysisInfo(
 AnalysisID As Long, AnalysisItem As Long) As String

 DLL

wchar_t * DPLGetAnalysisInfo(int InstanceID, int AnalysisID,
 int AnalysisItem);

Parameters

AnalysisID The ID of the set of analysis results to query, as returned by the AnalyseFile
function

AnalysisItem The specific analysis result to retrieve:
0 = File name (eg. "c:\hello.pdf")
1 = File size (eg. "2048" for a file exactly 2K in size)
2 = Author
3 = Title
4 = Subject
5 = Keywords
6 = Creator
7 = Producer
8 = PDF version (eg. "1.4")
9 = Page count (eg. "120")
10 = Creation date
11 = Modification date
12 = Document ID
13 = The supplied password:
"None" for no security
"User" for the user password
"Owner" for the owner password
14 = Document contains usage rights (eg. Reader Extensions)
"No" if there is no usage rights dictionary
"Yes" if there is a usage rights dictionary
15 = Name of signature in the usage rights dictionary
20..30 = Equivalent to SecurityInfo(0)..SecurityInfo(10)
31 = Number of form fields in the document
41..43 = Equivalent to SecurityInfo(11)..SecurityInfo(13)

GetAnnotActionID
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 7.16.

Description

This function will return an ActionID if the specified annotation has an action dictionary.
The ActionID can be used with the GetActionType and GetActionDest functions and can also be
compared to the values returned by GetOutlineActionID to determine if an annotation action is
shared with an outline action.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetAnnotActionID(Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetAnnotActionID(
 Index As Long) As Long

 DLL

int DPLGetAnnotActionID(int InstanceID, int Index);

Parameters

Index The index of the annotation. The first annotation on the page has an index of 1.

GetAnnotDblProperty
Annotations and hotspot links

Description

Returns a property of the specified annotation.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetAnnotDblProperty(Index,
 Tag: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetAnnotDblProperty(
 Index As Long, Tag As Long) As Double

 DLL

double DPLGetAnnotDblProperty(int InstanceID, int Index, int Tag);

Parameters

Index The index of the annotation. The first annotation on the page has an index of 1.

Tag 105 = Left
106 = Top
107 = Width
108 = Height
119 = Gray color component
120 = Red color component
121 = Green color component
122 = Blue color component
123 = Cyan color component
124 = Magenta color component
125 = Yellow color component
126 = Black color component
132 = Border width

GetAnnotDest
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

This function will return a DestID if the specified annotation has a destination entry. The DestID
can be used with the GetDestPage, GetDestType and GetDestValue functions.
If the annotation does not have a destination entry, this function will return zero.
The GetAnnotActionID function might return a value that can be used with theGetActionDest
function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetAnnotDest(Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetAnnotDest(
 Index As Long) As Long

 DLL

int DPLGetAnnotDest(int InstanceID, int Index);

Parameters

Index The index of the annotation. The first annotation on the page has an index of 1.

Return values

0 The specified annotation does not have a destination entry.

Non-zero A DestID that can be used with the destination functions.

GetAnnotEmbeddedFileName
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 10.13.

Description

Returns the filename of the embedded attachment that is stored in this annotation object

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetAnnotEmbeddedFileName(Index,
 Options: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetAnnotEmbeddedFileName(
 Index As Long, Options As Long) As String

 DLL

wchar_t * DPLGetAnnotEmbeddedFileName(int InstanceID, int Index,
 int Options);

Parameters

Index The index of the annotation. The first annotation on the page has an index of 1.

Options Currently not used. Default = 0

GetAnnotEmbeddedFileToFile
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 10.13.

Description

Saves the embedded file inside the annotation object to the specified file on disk.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetAnnotEmbeddedFileToFile(Index,
 Options: Integer; FileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetAnnotEmbeddedFileToFile(
 Index As Long, Options As Long, FileName As String) As Long

 DLL

int DPLGetAnnotEmbeddedFileToFile(int InstanceID, int Index, int Options,
 wchar_t * FileName);

Parameters

Index The index of the annotation. The first annotation on the page has an index of 1.

Options Currently not used. Default = 0

FileName The filename of where to save the file

GetAnnotEmbeddedFileToString
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 10.13.

Description

Returns the embedded file inside the annotation object as a string.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetAnnotEmbeddedFileToString(Index,
 Options: Integer): AnsiString;

 DLL

char * DPLGetAnnotEmbeddedFileToString(int InstanceID, int Index,
 int Options);

Parameters

Index The index of the annotation. The first annotation on the page has an index of 1.

Options Currently not used. Default = 0

GetAnnotIntProperty
Annotations and hotspot links

Description

Returns a property of the specified annotation.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetAnnotIntProperty(Index,
 Tag: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetAnnotIntProperty(
 Index As Long, Tag As Long) As Long

 DLL

int DPLGetAnnotIntProperty(int InstanceID, int Index, int Tag);

Parameters

Index The index of the annotation. The first annotation on the page has an index of 1.

Tag 109 = Flags
116 = Page number of "GoToR" action (1 is first page)
128 = Index of the annotation that this annotation is in reply to
131 = Page number of "GoTo" action
133 = Returns 1 if a "Launch" or "GoToR" action's NewWindow property is set

GetAnnotQuadCount
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

Returns the number of quads (rectangular areas) within the specified annotation.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetAnnotQuadCount(Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetAnnotQuadCount(
 Index As Long) As Long

 DLL

int DPLGetAnnotQuadCount(int InstanceID, int Index);

Parameters

Index The index of the annotation. The first annotation on the page has an index of 1.

GetAnnotQuadPoints
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

Returns a component of the specified quad (rectangular area) contained within the specified
annotation.
From version 7.25 the order of the co-ordinates has changed for consistency between
GetPageText and SetAnnotQuadPoints.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetAnnotQuadPoints(Index, QuadNumber,
 PointNumber: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetAnnotQuadPoints(
 Index As Long, QuadNumber As Long,
 PointNumber As Long) As Double

 DLL

double DPLGetAnnotQuadPoints(int InstanceID, int Index, int QuadNumber,
 int PointNumber);

Parameters

Index The index of the annotation. The first annotation on the page has an index of
1.

QuadNumber The number of the quad to access. The first quad has a QuadNumber of 1.

PointNumber 1 = The horizontal co-ordinate of the bottom-left corner
2 = The vertical co-ordinate of the bottom-left corner
3 = The horizontal co-ordinate of the bottom-right corner
4 = The vertical co-ordinate of the bottom-right corner
5 = The horizontal co-ordinate of the top-right corner
6 = The vertical co-ordinate of the top-right corner
7 = The horizontal co-ordinate of the top-left corner
8 = The vertical co-ordinate of the top-left corner

GetAnnotSoundToFile
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 9.14.

Description

Copies the sound data stored in the specified annotation into a file.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetAnnotSoundToFile(Index,
 Options: Integer; SoundFileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetAnnotSoundToFile(
 Index As Long, Options As Long,
 SoundFileName As String) As Long

 DLL

int DPLGetAnnotSoundToFile(int InstanceID, int Index, int Options,
 wchar_t * SoundFileName);

Parameters

Index The index of the annotation. The first annotation on the page has an index
of 1.

Options 0 = Sound data as stored in the PDF
1 = Encode data as a WAV file

SoundFileName The path and name of the file to create containing the sound data.

Return values

0 The sound could not be written

1 The sound was written successfully

GetAnnotSoundToString
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 9.14.

Description

Returns the sound data stored in the specified annotation.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetAnnotSoundToString(Index,
 Options: Integer): AnsiString;

 DLL

char * DPLGetAnnotSoundToString(int InstanceID, int Index, int Options);

Parameters

Index The index of the annotation. The first annotation on the page has an index of 1.

Options 0 = Sound data as stored in the PDF
1 = Encode data as a WAV file

GetAnnotStrProperty
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 7.15.

Description

Returns a property of the specified annotation.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetAnnotStrProperty(Index,
 Tag: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetAnnotStrProperty(
 Index As Long, Tag As Long) As String

 DLL

wchar_t * DPLGetAnnotStrProperty(int InstanceID, int Index, int Tag);

Parameters

Index The index of the annotation. The first annotation on the page has an index of 1.

Tag 101 = Annotation type
102 = Contents
103 = Name
104 = Modified date
110 = Author
111 = URL of a link annotation
112 = Action type of link annotation, eg. "URI", "Launch", "GoToR"
113 = The "Win" file name of a "Launch" action
114 = The "F" file name of a "Launch" action
115 = The "F" file name of a "GoToR" action
117 = The name of the annotation icon
118 = Color space, eg. "Gray", "RGB", "CMYK"
127 = Subject of the annotation
129 = The "UF" file name of a "Launch" action
130 = The "UF" file name of a "GoToR" action

GetBarcodeWidth
Vector graphics, Page layout

Description

Returns the total width of a barcode based on the width of the smallest bars in the barcode.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetBarcodeWidth(NominalWidth: Double;
 Text: WideString; Barcode: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetBarcodeWidth(
 NominalWidth As Double, Text As String,
 Barcode As Long) As Double

 DLL

double DPLGetBarcodeWidth(int InstanceID, double NominalWidth,
 wchar_t * Text, int Barcode);

Parameters

NominalWidth The desired width of the narrowest bars in the barcode

Text The barcode data

Barcode 1 = Code39 (or Code 3 of 9)
2 = EAN-13
3 = Code128
4 = PostNet
5 = Interleaved 2 of 5

GetBaseURL
Document properties, Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 7.26.

Description

Returns the Base URL for all URL links in the document.
For example, if the Base URL was set to "http://www.example.com/" and a URL link destination
was set to "index.html" then the link will point to "http://www.example.com/index.html".
Use the AddLinkToWeb function to add a URL link to the current page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetBaseURL: WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetBaseURL As String

 DLL

wchar_t * DPLGetBaseURL(int InstanceID);

GetCSDictEPSG
Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Returns the EPSG reference code for a coordinate system dictionary (see www.epsg.org).

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetCSDictEPSG(CSDictID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetCSDictEPSG(
 CSDictID As Long) As Long

 DLL

int DPLGetCSDictEPSG(int InstanceID, int CSDictID);

Parameters

CSDictID A value returned from the GetMeasureDictGCSDict or GetMeasureDictDCSDict
functions

GetCSDictType
Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Returns the coordinate system type for a coordinate system dictionary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetCSDictType(CSDictID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetCSDictType(
 CSDictID As Long) As Long

 DLL

int DPLGetCSDictType(int InstanceID, int CSDictID);

Parameters

CSDictID A value returned from the GetMeasureDictGCSDict or GetMeasureDictDCSDict
functions

Return values

0 The CSDictID parameter was incorrect

1 A geographic coordinate system (GEOGCS)

2 A projected coordinate system (PROJCS)

GetCSDictWKT
Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Returns the Well Known Text (WKT) description of a coordinate system dictionary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetCSDictWKT(CSDictID: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetCSDictWKT(
 CSDictID As Long) As String

 DLL

wchar_t * DPLGetCSDictWKT(int InstanceID, int CSDictID);

Parameters

CSDictID A value returned from the GetMeasureDictGCSDict or GetMeasureDictDCSDict
functions

GetCanvasDC
Vector graphics, Document management

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Creates a canvas of the specified size and returns a Windows device context DC that can be drawn
on using Win32 drawing commands. When drawing operations are complete, call the
LoadFromCanvasDC function to create a new document from the supplied drawing commands.
The return value is defined as either an unsigned integer or a signed integer on different platforms
and editions of the library.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetCanvasDC(CanvasWidth,
 CanvasHeight: Integer): HDC;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetCanvasDC(CanvasWidth As Long,
 CanvasHeight As Long) As Long

 DLL

HDC DPLGetCanvasDC(int InstanceID, int CanvasWidth, int CanvasHeight);

Parameters

CanvasWidth The width of the canvas

CanvasHeight The height of the canvas

GetCanvasDCEx
Vector graphics, Document management

Version history

This function was introduced in Quick PDF Library version 10.15.

Description

Creates a canvas of the specified size and returns a Windows device context DC that can be drawn
on using Win32 drawing commands. When drawing operations are complete, call the
LoadFromCanvasDC function to create a new document from the supplied drawing commands.
The Ex version of the function allows you to pass an existing Device Context handle as a reference
when creating the DC.
The return value is defined as either an unsigned integer or a signed integer on different platforms
and editions of the library.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetCanvasDCEx(CanvasWidth, CanvasHeight,
 ReferenceDC: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetCanvasDCEx(
 CanvasWidth As Long, CanvasHeight As Long,
 ReferenceDC As Long) As Long

 DLL

int DPLGetCanvasDCEx(int InstanceID, int CanvasWidth, int CanvasHeight,
 int ReferenceDC);

Parameters

CanvasWidth The width of the canvas

CanvasHeight The height of the canvas

ReferenceDC The reference device context handle

GetCatalogInformation
Document properties

Description

This function allows you to retrieve custom information from the "Catalog" section of the
document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetCatalogInformation(
 Key: WideString): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetCatalogInformation(
 Key As String) As String

 DLL

wchar_t * DPLGetCatalogInformation(int InstanceID, wchar_t * Key);

Parameters

Key The name of the key to retrieve. This key must have a special prefix assigned to you
by Adobe to avoid conflicts with other software.

GetContentStreamToString
Page properties, Content Streams and Optional Content Groups, Page manipulation

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Returns the PDF page description commands in the content stream part that was selected with the
SelectContentStream function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetContentStreamToString: AnsiString;

 DLL

char * DPLGetContentStreamToString(int InstanceID);

GetContentStreamToVariant
Page properties, Content Streams and Optional Content Groups, Page manipulation

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Returns the PDF page description commands in the content stream part that was selected with the
SelectContentStream function. The data is returned as a variant byte array.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetContentStreamToVariant As Variant

GetCustomInformation
Document properties

Description

Returns a custom value from the document. This function and the SetCustomInformation
function can be used to store and retrieve custom document metadata.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetCustomInformation(
 Key: WideString): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetCustomInformation(
 Key As String) As String

 DLL

wchar_t * DPLGetCustomInformation(int InstanceID, wchar_t * Key);

Parameters

Key Specifies which key to retrieve the value of

Return values

The value of the specified key, or an empty string if the key could not be found. An
empty string will also be returned if the key is "Author", "Keywords", "Subject",
"Title", "Creator" or "Producer". For these keys, use the GetInformation function.

GetCustomKeys
Document properties

Description

Returns all the custom keys in either the Document Information Dictionary or Document Catalog as
a CSV string. See the SetCustomInformation and GetCustomInformation functions for details of
how to manipulate the data stored under these keys.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetCustomKeys(
 Location: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetCustomKeys(
 Location As Long) As String

 DLL

wchar_t * DPLGetCustomKeys(int InstanceID, int Location);

Parameters

Location The location to extract custom key names from:
1 = Document Information Dictionary
2 = Document Catalog

GetDefaultPrinterName
Rendering and printing

Description

Returns the name of the default printer. This name can be used with the PrintDocument or
NewCustomPrinter functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetDefaultPrinterName: WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetDefaultPrinterName As String

 DLL

wchar_t * DPLGetDefaultPrinterName(int InstanceID);

GetDestName
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 7.22.

Description

Returns the name of the specified destination.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetDestName(DestID: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetDestName(
 DestID As Long) As String

 DLL

wchar_t * DPLGetDestName(int InstanceID, int DestID);

Parameters

DestID The ID of the destination to analyse. A valid destination ID is returned by the
GetOutlineDest function.

GetDestPage
Annotations and hotspot links

Description

Returns the page number of the specified destination, or zero if the destination is invalid or does
not contain a page number.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetDestPage(DestID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetDestPage(
 DestID As Long) As Long

 DLL

int DPLGetDestPage(int InstanceID, int DestID);

Parameters

DestID The ID of the destination to analyse. A valid destination ID is returned by the
GetOutlineDest function.

GetDestType
Annotations and hotspot links

Description

Returns the type of the specified destination.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetDestType(DestID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetDestType(
 DestID As Long) As Long

 DLL

int DPLGetDestType(int InstanceID, int DestID);

Parameters

DestID The ID of the destination to analyse. A valid destination ID is returned by the
GetOutlineDest function.

Return values

1 "XYZ" - the target page is positioned at the Left and Top properties of the
destination, and the Zoom property specifies the zoom percentage

2 "Fit" - the entire page is zoomed to fit the window

3 "FitH" - the page is zoomed so that the entire width of the page is visible. The height
of the page may be greater or less than the height of the window. The page is
positioned vertically at the Top property of the destination.

4 "FitV" - the page is zoomed so that the entire height of the page can be seen. The
width of the page may be greater or less than the width of the window. The page is
positioned horizontally at the Left property of the destination.

5 "FitR" - the page is zoomed so that a certain rectangle on the page is visible. The
Left, Top, Right and Bottom properties of the destination define the rectangle on the
page.

6 "FitB" - the page is zoomed so that it's bounding box is visible

7 "FitBH" - the page is positioned vertically at the value of the Top property of the
destination, and the page is zoomed so that the entire width of the page's bounding
box is visible

8 "FitBV" - the page is positioned at the value of the Left property of the destination is
visible, and the page is zoomed just enough to fit the entire height of the bounding
box into the window

GetDestValue
Annotations and hotspot links

Description

Returns the value of a property of the specified destination.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetDestValue(DestID,
 ValueKey: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetDestValue(DestID As Long,
 ValueKey As Long) As Double

 DLL

double DPLGetDestValue(int InstanceID, int DestID, int ValueKey);

Parameters

DestID The ID of the destination to analyse. A valid destination ID is returned by the
GetOutlineDest function.

ValueKey 1 = Left
2 = Top
3 = Right
4 = Bottom
5 = Zoom

GetDocJavaScript
Document properties, JavaScript

Description

Retrieves the JavaScript linked to a specified document action.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetDocJavaScript(
 ActionType: WideString): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetDocJavaScript(
 ActionType As String) As String

 DLL

wchar_t * DPLGetDocJavaScript(int InstanceID, wchar_t * ActionType);

Parameters

ActionType Retrieve the JavaScript linked to this action:
"DC" = Document close
"WS" = Will save
"DS" = Did save
"WP" = Will print
"DP" = Did print

GetDocumentFileName
Document management

Version history

This function was introduced in Quick PDF Library version 7.17.

Description

Returns the file name of the selected document if it was opened using LoadFromFile.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetDocumentFileName: WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetDocumentFileName As String

 DLL

wchar_t * DPLGetDocumentFileName(int InstanceID);

GetDocumentFileSize
Document properties

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

Returns the file size of the selected document.
The size cannot be determined dynamically - it will only be set directly after a call to
LoadFromFile, LoadFromStream, LoadFromString, LoadFromVariant, SaveToFile,
SaveToStream, SaveToString or SaveToVariant.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetDocumentFileSize: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetDocumentFileSize As Long

 DLL

int DPLGetDocumentFileSize(int InstanceID);

GetDocumentID
Document management

Version history

This function was renamed in Quick PDF Library version 7.11.
The function name in earlier versions was DocumentID.

Description

Returns the ID of the document with the specified index.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetDocumentID(Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetDocumentID(
 Index As Long) As Long

 DLL

int DPLGetDocumentID(int InstanceID, int Index);

Parameters

Index The index of the document to query. Must be 1 or greater.

Return values

0 The specified index was out of range

Non-zero The ID of the specified document

GetDocumentIdentifier
Document properties

Description

Returns the document identifier. This identifier consists of two parts, each strings. The first string
does not change when the document is resaved with an "incremental update" in Acrobat. This can
be seen as the permanent identifier for the document. The second part will change each time the
document is resaved, even if the resave is an incremental update.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetDocumentIdentifier(Part,
 Options: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetDocumentIdentifier(
 Part As Long, Options As Long) As String

 DLL

wchar_t * DPLGetDocumentIdentifier(int InstanceID, int Part, int Options);

Parameters

Part 0 = Permanent identifier
1 = Changeable identifier

Options 0 = Return the identifier as a string of characters
1 = Return the identifier as a hexadecimal string

GetDocumentMetadata
Document properties

Description

Returns the document's metadata, if any.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetDocumentMetadata: WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetDocumentMetadata As String

 DLL

wchar_t * DPLGetDocumentMetadata(int InstanceID);

GetDocumentRepaired
Document properties, Document management

Version history

This function was introduced in Quick PDF Library version 9.11.

Description

Indicates whether the document was repaired when it was loaded.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetDocumentRepaired: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetDocumentRepaired As Long

 DLL

int DPLGetDocumentRepaired(int InstanceID);

Return values

0 The document was not repaired

1 The document was repaired

GetDocumentResourceList
Document properties

Version history

This function was introduced in Quick PDF Library version 7.11.

Description

Returns a list of the PDF resource names used in the document. For advanced use only.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetDocumentResourceList: WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetDocumentResourceList As String

 DLL

wchar_t * DPLGetDocumentResourceList(int InstanceID);

GetEmbeddedFileContentToFile
Document properties

Version history

This function was introduced in Quick PDF Library version 7.13.

Description

Extracts the specified embedded file and writes the content to the specified file.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetEmbeddedFileContentToFile(
 Index: Integer; FileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetEmbeddedFileContentToFile(
 Index As Long, FileName As String) As Long

 DLL

int DPLGetEmbeddedFileContentToFile(int InstanceID, int Index,
 wchar_t * FileName);

Parameters

Index The index of the embedded file. Must be a value between 1 and the value returned
by EmbeddedFileCount.

FileName The path and file name of the file to write the contents to.

Return values

0 Could not write to the specified file or Index parameter was invalid.

1 Embedded file contents written to the specified file successfully.

GetEmbeddedFileContentToStream
Document properties

Version history

This function was introduced in Quick PDF Library version 7.13.

Description

Extracts the specified embedded file and writes the content to the specified stream.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetEmbeddedFileContentToStream(
 Index: Integer; OutStream: TStream): Integer;

Parameters

Index The index of the embedded file. Must be a value between 1 and the value
returned by EmbeddedFileCount.

OutStream The TStream object to write the contents to

Return values

0 Could not write to the specified stream or Index parameter was invalid.

1 Success

GetEmbeddedFileContentToString
Document properties

Version history

This function was introduced in Quick PDF Library version 7.13.

Description

Extracts the specified embedded file and returns the content as a string.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetEmbeddedFileContentToString(
 Index: Integer): AnsiString;

 DLL

char * DPLGetEmbeddedFileContentToString(int InstanceID, int Index);

Parameters

Index The index of the embedded file. Must be a value between 1 and the value returned
by EmbeddedFileCount.

GetEmbeddedFileContentToVariant
Document properties

Version history

This function was introduced in Quick PDF Library version 7.13.

Description

Extracts the specified embedded file and returns the content as a byte array variant.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetEmbeddedFileContentToVariant(
 Index As Long) As Variant

Parameters

Index The index of the embedded file. Must be a value between 1 and the value returned
by EmbeddedFileCount.

GetEmbeddedFileID
Document properties

Version history

This function was introduced in Quick PDF Library version 7.25.

Description

Returns the ID of the specified embedded file. This ID can be used with the
AddLinkToEmbeddedFile function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetEmbeddedFileID(Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetEmbeddedFileID(
 Index As Long) As Long

 DLL

int DPLGetEmbeddedFileID(int InstanceID, int Index);

Parameters

Index The index of the embedded file. Must be a value between 1 and the value returned
by EmbeddedFileCount.

Return values

0 The specified index was invalid

Non-zero An EmbeddedFileID value

GetEmbeddedFileIntProperty
Document properties

Version history

This function was introduced in Quick PDF Library version 7.13.

Description

Retrieves an integer property of the specified embedded file.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetEmbeddedFileIntProperty(Index,
 Tag: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetEmbeddedFileIntProperty(
 Index As Long, Tag As Long) As Long

 DLL

int DPLGetEmbeddedFileIntProperty(int InstanceID, int Index, int Tag);

Parameters

Index The index of the embedded file. Must be a value between 1 and the value returned
by EmbeddedFileCount.

Tag 5 = Deprecated (previously same as 6)
6 = File size in bytes

GetEmbeddedFileStrProperty
Document properties

Version history

This function was introduced in Quick PDF Library version 7.13.

Description

Retrieves a string property of the specified embedded file.
Use the SetEmbeddedFileStrProperty function to change the values.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetEmbeddedFileStrProperty(Index,
 Tag: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetEmbeddedFileStrProperty(
 Index As Long, Tag As Long) As String

 DLL

wchar_t * DPLGetEmbeddedFileStrProperty(int InstanceID, int Index,
 int Tag);

Parameters

Index The index of the embedded file. Must be a value between 1 and the value returned
by EmbeddedFileCount.

Tag 1 = File name
2 = MIME type
3 = Creation date
4 = Modification date
5 = Title
7 = Description

GetEncryptionFingerprint
Document properties, Security and Signatures

Description

Returns all the encryption information for the selected document. This encryption "fingerprint" can
be used to encrypt a different document using the EncryptWithFingerprint function. This allows
a new document to be encrypted with the same passwords as an existing document without
actually knowing these passwords.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetEncryptionFingerprint: WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetEncryptionFingerprint As String

 DLL

wchar_t * DPLGetEncryptionFingerprint(int InstanceID);

GetFileMetadata
Document properties

Description

Returns the metadata in a file, if any.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFileMetadata(InputFileName,
 Password: WideString): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFileMetadata(
 InputFileName As String, Password As String) As String

 DLL

wchar_t * DPLGetFileMetadata(int InstanceID, wchar_t * InputFileName,
 wchar_t * Password);

Parameters

InputFileName The path and name of the document to extract metadata from.

Password The password to use when opening the document

GetFirstChildOutline
Outlines

Description

Returns the ID of the outline that is the first child of the specified outline.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFirstChildOutline(
 OutlineID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFirstChildOutline(
 OutlineID As Long) As Long

 DLL

int DPLGetFirstChildOutline(int InstanceID, int OutlineID);

Parameters

OutlineID The ID of the outline item to work with. This ID is returned by the NewOutline or
NewStaticOutline functions, or retrieved with the GetOutlineID function or
Get*Outline functions.

GetFirstOutline
Outlines

Description

Returns the ID of the first outline in the hierarchy.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFirstOutline: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFirstOutline As Long

 DLL

int DPLGetFirstOutline(int InstanceID);

GetFontEncoding
Fonts

Version history

This function was introduced in Quick PDF Library version 7.22.

Description

Returns the font encoding of the selected font.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFontEncoding: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFontEncoding As Long

 DLL

int DPLGetFontEncoding(int InstanceID);

Return values

0 Unknown

1 MacRomanEncoding

2 WinAnsiEncoding

3 MacExpertEncoding

5 No encoding

GetFontFlags
Fonts

Version history

This function was introduced in Quick PDF Library version 9.14.

Description

Returns the value of the specified bit in the flags property of the selected font.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFontFlags(
 FontFlagItemID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFontFlags(
 FontFlagItemID As Long) As Long

 DLL

int DPLGetFontFlags(int InstanceID, int FontFlagItemID);

Parameters

FontFlagItemID 1 = Fixed
2 = Serif
3 = Symbolic
4 = Script
5 = Italic
6 = AllCap
7 = SmallCap
8 = ForceBold

Return values

0 Flag is not set

1 Flag is set

GetFontID
Text, Fonts

Version history

This function was renamed in Quick PDF Library version 7.11.
The function name in earlier versions was FontID.

Description

Returns the ID of the specified font. Before this function is used a call to FindFonts or FontCount
must be made in order to generate a list of fonts available for use in the selected document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFontID(Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFontID(Index As Long) As Long

 DLL

int DPLGetFontID(int InstanceID, int Index);

Parameters

Index The index of the font. The first font has an index of 1.

Return values

0 The index is out of bounds

Non-zero The ID of the specified font

GetFontIsEmbedded
Fonts

Description

This function will return 1 if the font is an embedded font

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFontIsEmbedded: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFontIsEmbedded As Long

 DLL

int DPLGetFontIsEmbedded(int InstanceID);

Return values

1 Font is embedded

0 Font is not embedded

GetFontIsSubsetted
Fonts

Description

This function will return 1 if the font is a subsetted font.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFontIsSubsetted: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFontIsSubsetted As Long

 DLL

int DPLGetFontIsSubsetted(int InstanceID);

Return values

1 Font is subsetted

0 Font is not subsetted

GetFontMetrics
Fonts

Description

Gets selected font parameters

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFontMetrics(
 MetricType: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFontMetrics(
 MetricType As Long) As Long

 DLL

int DPLGetFontMetrics(int InstanceID, int MetricType);

Parameters

MetricType 1: FontAscent,
2: FontDescent,
3: FontInternalLeading,
4: FontExternalLeading,
5: EM Square,
6: Average char width

GetFontObjectNumber
Fonts

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

This specialized function returns the internal object number of the selected font. This object
number can sometimes be used by other systems.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFontObjectNumber: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFontObjectNumber As Long

 DLL

int DPLGetFontObjectNumber(int InstanceID);

GetFormFieldActionID
Form fields, Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

Returns an ActionID for the specified form field which can be used with the various action
manipulation functions such as GetActionType, GetActionDest, GetActionURL and
SetActionURL.
There are different trigger events and each one has it's own action.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldActionID(Index: Integer;
 TriggerEvent: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldActionID(
 Index As Long, TriggerEvent As String) As Long

 DLL

int DPLGetFormFieldActionID(int InstanceID, int Index,
 wchar_t * TriggerEvent);

Parameters

Index The index of the form field to work with. The first form field has an index of 1.

TriggerEvent Retrieve the action for the specified trigger event:
Empty string = simple activation action
E = annotation enter action
X = annotation exit action
D = annotation button down action
U = annotation button up action
Fo = annotation input focus action
Bl = annotation input blur (opposite of focus) action
PO = annotation page open action
PC = annotation page close action
PV = annotation page visible action
PI = annotation page invisible action
K = form field change action
F = form field format action
V = form field validate action
C = form field calculate action

Return values

0 The field index was invalid or the field does not have an action associated with
the specified trigger event

Non-zero The form field's ActionID for the specified trigger event

GetFormFieldAlignment
Form fields

Description

Retrieves the text alignment of the specified form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldAlignment(
 Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldAlignment(
 Index As Long) As Long

 DLL

int DPLGetFormFieldAlignment(int InstanceID, int Index);

Parameters

Index The index of the form field to work with. The first form field has an index of 1.

Return values

0 Left alignment (this value is also returned if the form field could not be found)

1 Centered

2 Right aligned

GetFormFieldAnnotFlags
Form fields

Description

Get the "annotation" flags for the specified form field. This is for advanced use. See the PDF
specification for full details.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldAnnotFlags(
 Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldAnnotFlags(
 Index As Long) As Long

 DLL

int DPLGetFormFieldAnnotFlags(int InstanceID, int Index);

Parameters

Index The index of the form field to check

GetFormFieldBackgroundColor
Form fields, Color

Description

Returns the background color of the specified field. The number of available values will depend on
the color type specified in the form field. The number of components available can be retrieved
using theGetFormFieldBackgroundColorType function.
0 = No color specified
1 = DeviceGray (1 component)
3 = DeviceRGB (3 components)
4 = CMYK (4 components

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldBackgroundColor(Index,
 ColorComponent: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldBackgroundColor(
 Index As Long, ColorComponent As Long) As Double

 DLL

double DPLGetFormFieldBackgroundColor(int InstanceID, int Index,
 int ColorComponent);

Parameters

Index The index of the form field to examine

ColorComponent For DeviceGray (color type = 1)
1 = Gray level
For DeviceRGB (color type = 3)
1 = Red
2 = Green
3 = Blue
For DeviceCMYK (color type = 4)
1 = Cyan
2 = Magenta
3 = Yellow
4 = Black

GetFormFieldBackgroundColorType
Form fields, Color

Version history

This function was introduced in Quick PDF Library version 9.12.

Description

Returns the number of color components of the specified field's background.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldBackgroundColorType(
 Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldBackgroundColorType(
 Index As Long) As Long

 DLL

int DPLGetFormFieldBackgroundColorType(int InstanceID, int Index);

Parameters

Index The index of the field to examine

Return values

0 No color defined

1 Gray

3 RGB

4 CMYK

GetFormFieldBorderColor
Form fields, Color

Description

Returns the color of the specified field's border. The number of available values will depend on the
color type specified in the form field. The number of components available can be retrieved using
theGetFormFieldBorderColorType function.
0 = No color specified
1 = DeviceGray (1 component)
3 = DeviceRGB (3 components)
4 = CMYK (4 components

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldBorderColor(Index,
 ColorComponent: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldBorderColor(
 Index As Long, ColorComponent As Long) As Double

 DLL

double DPLGetFormFieldBorderColor(int InstanceID, int Index,
 int ColorComponent);

Parameters

Index The index of the form field to examine

ColorComponent For DeviceGray (color type = 1)
1 = Gray level
For DeviceRGB (color type = 3)
1 = Red
2 = Green
3 = Blue
For DeviceCMYK (color type = 4)
1 = Cyan
2 = Magenta
3 = Yellow
4 = Black

GetFormFieldBorderColorType
Form fields, Color

Version history

This function was introduced in Quick PDF Library version 9.12.

Description

Returns the number of color components of the specified field's border.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldBorderColorType(
 Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldBorderColorType(
 Index As Long) As Long

 DLL

int DPLGetFormFieldBorderColorType(int InstanceID, int Index);

Parameters

Index The index of the form field to examine

Return values

0 No color defined

1 Gray

3 RGB

4 CMYK

GetFormFieldBorderProperty
Form fields

Description

Returns various properties of the specified field's border.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldBorderProperty(Index,
 PropKey: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldBorderProperty(
 Index As Long, PropKey As Long) As Double

 DLL

double DPLGetFormFieldBorderProperty(int InstanceID, int Index,
 int PropKey);

Parameters

Index The index of the form field to examine

PropKey 1 = Border width
2 = Dash on
3 = Dash off

GetFormFieldBorderStyle
Form fields

Description

Returns the border style of the specified field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldBorderStyle(
 Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldBorderStyle(
 Index As Long) As Long

 DLL

int DPLGetFormFieldBorderStyle(int InstanceID, int Index);

Parameters

Index The index of the form field to examine

Return values

0 Solid

1 Dashed

2 Beveled

3 Inset

4 Underline

GetFormFieldBound
Form fields

Description

Returns the bounding box of the specified form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldBound(Index,
 Edge: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldBound(Index As Long,
 Edge As Long) As Double

 DLL

double DPLGetFormFieldBound(int InstanceID, int Index, int Edge);

Parameters

Index The index of the form field to measure. The first form field has an index of 1.

Edge The required edge:
0 = Left
1 = Top
2 = Width
3 = Height

Return values

0 Could not find the specified form field

Non-zero The requested measurement

GetFormFieldCaption
Form fields

Description

Returns the caption of a form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldCaption(
 Index: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldCaption(
 Index As Long) As String

 DLL

wchar_t * DPLGetFormFieldCaption(int InstanceID, int Index);

Parameters

Index The index of the form field

GetFormFieldCaptionEx
Form fields

Version history

This function was introduced in Quick PDF Library version 11.11.

Description

Returns the caption of a form field, based on the specified parameter.
The parameter specifies which string to extract. Otions are for CA, RC and AC strings, but the RC
and AC strings are reserved only for pushbuttons. Trying to extract RC or AC string from
radiobutton or checkbox will result in null string because these are not used in this types of
buttons. More info can be found in PDF format reference manual.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldCaptionEx(Index,
 StringType: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldCaptionEx(
 Index As Long, StringType As Long) As String

 DLL

wchar_t * DPLGetFormFieldCaptionEx(int InstanceID, int Index,
 int StringType);

Parameters

Index The index of the form field

StringType 1 = CA String
2 = RC String
3 = AC String

GetFormFieldCheckStyle
Form fields

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Returns the checkbox style of the specified form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldCheckStyle(
 Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldCheckStyle(
 Index As Long) As Long

 DLL

int DPLGetFormFieldCheckStyle(int InstanceID, int Index);

Parameters

Index The index of the form field

Return values

0 Cross

1 Check (Tick)

2 Dot (Radio)

3 XP Check

4 XP Radio

5 Diamond

6 Square

7 Start

GetFormFieldChildTitle
Form fields

Description

Form fields can be arranged in a hierarchical structure, and the title of the form field will be the full
path to the field, for example "names.first" or "address.zipcode". This function will return only the
last part of the title, "first" or "zipcode" in this example.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldChildTitle(
 Index: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldChildTitle(
 Index As Long) As String

 DLL

wchar_t * DPLGetFormFieldChildTitle(int InstanceID, int Index);

Parameters

Index The index of the form field to retrieve the title of

GetFormFieldChoiceType
Form fields

Description

Determines whether a choice form field is a combo box or list box field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldChoiceType(
 Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldChoiceType(
 Index As Long) As Long

 DLL

int DPLGetFormFieldChoiceType(int InstanceID, int Index);

Parameters

Index The index of the form field

Return values

0 The form field is not a choice form field

1 The form field is a scrollable list box

2 The form field is a drop-down combo box

3 The form field is a multiselect scrollable list box

4 The form field is a drop-down combo box with an edit box

GetFormFieldColor
Form fields, Color

Description

Retrieves the color of the text in the form field. This function must be called three times to retrieve
all components of the color (red, green and blue).

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldColor(Index,
 ColorComponent: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldColor(Index As Long,
 ColorComponent As Long) As Double

 DLL

double DPLGetFormFieldColor(int InstanceID, int Index, int ColorComponent);

Parameters

Index The index of the form field to work with. The first form field has an index of
1.

ColorComponent 1 = Red
2 = Green
3 = Blue

GetFormFieldComb
Form fields

Description

Returns 1 if the specified form field is marked as a comb field, where each character in the value
occupies the same space in the field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldComb(Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldComb(
 Index As Long) As Long

 DLL

int DPLGetFormFieldComb(int InstanceID, int Index);

Parameters

Index The index of the form field

GetFormFieldDefaultValue
Form fields

Description

Returns the default value of a form field. This is the value that the field will have when the form is
reset.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldDefaultValue(
 Index: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldDefaultValue(
 Index As Long) As String

 DLL

wchar_t * DPLGetFormFieldDefaultValue(int InstanceID, int Index);

Parameters

Index The index of the form field

GetFormFieldDescription
Form fields

Description

Retrieves the description of the specified form field if it has one.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldDescription(
 Index: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldDescription(
 Index As Long) As String

 DLL

wchar_t * DPLGetFormFieldDescription(int InstanceID, int Index);

Parameters

Index The index of the form field to work with

GetFormFieldFlags
Form fields

Description

Retrieves a form field's flags. This setting is for advanced purposes and most users will not need to
use it.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldFlags(Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldFlags(
 Index As Long) As Long

 DLL

int DPLGetFormFieldFlags(int InstanceID, int Index);

Parameters

Index The index of the form field

Return values

0 Cannot find the form field

Non-zero The flags for the specified form field

GetFormFieldFontName
Form fields

Description

Retrieves the name of the font that the specified form field is using.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldFontName(
 Index: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldFontName(
 Index As Long) As String

 DLL

wchar_t * DPLGetFormFieldFontName(int InstanceID, int Index);

Parameters

Index The index of the form field to work with. The first form field has an index of 1.

GetFormFieldJavaScript
Form fields

Description

Retrieves the JavaScript associated with the specified action for the specified form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldJavaScript(Index: Integer;
 ActionType: WideString): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldJavaScript(
 Index As Long, ActionType As String) As String

 DLL

wchar_t * DPLGetFormFieldJavaScript(int InstanceID, int Index,
 wchar_t * ActionType);

Parameters

Index The index of the form field

ActionType The action type:
E = An action to be performed when the cursor enters the annotation's active
area
X = An action to be performed when the cursor exits the annotation's active area
D = An action to be performed when the mouse button is pressed inside the
annotation's active area
U = An action to be performed when the mouse button is released inside the
annotation's active area
Fo = An action to be performed when the annotation receives the input focus
Bl = An action to be performed when the annotation loses the input focus
(blurred)
K = An action to be performed when the user types a keystroke into a text field
or combo box or modifies the selection in a scrollable list box. This allows the
keystroke to be checked for validity and rejected or modified.
F = An action to be performed before the field is formatted to display its current
value. This allows the field's value to be modified before formatting.
V = An action to be performed when the field's value is changed. This allows the
new value to be checked for validity.
C = An action to be performed in order to recalculate the value of this field when
that of another field changes

GetFormFieldKidCount
Form fields

Description

Returns the number of children fields that the specified field has.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldKidCount(
 Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldKidCount(
 Index As Long) As Long

 DLL

int DPLGetFormFieldKidCount(int InstanceID, int Index);

Parameters

Index The index of the form field. The first field has an index of 1.

GetFormFieldKidTempIndex
Form fields

Version history

This function was renamed in Quick PDF Library version 10.11.
The function name in earlier versions was GetFormFieldSubTempIndex.

Description

Returns a temporary index for the item fields (kids) of a radio button or checkbox form field group.
An index of 1 will select the first radio or checkbox in the group, 2 the second and so on. The
number of kids can be determined by calling GetFormFieldKidCount. This temporary index can
be used with the regular form field functions such as GetFormFieldTabOrder and
GetFormFieldValue.
If you need to update the subname for a choice field then you should use
SetFormFieldSubChoice instead.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldKidTempIndex(Index,
 SubIndex: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldKidTempIndex(
 Index As Long, SubIndex As Long) As Long

 DLL

int DPLGetFormFieldKidTempIndex(int InstanceID, int Index, int SubIndex);

Parameters

Index The index of the radio-button form field

SubIndex The index of the sub-field. The first sub-field has an index of 1.

GetFormFieldMaxLen
Form fields

Description

Retrieves the maximum allowed length for a text form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldMaxLen(Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldMaxLen(
 Index As Long) As Long

 DLL

int DPLGetFormFieldMaxLen(int InstanceID, int Index);

Parameters

Index The index of the form field to work with. The first form field has an index of 1.

Return values

0 The form field does not have a maximum length specified

Non-zero The maximum length of the form field

GetFormFieldNoExport
Form fields

Version history

This function was introduced in Quick PDF Library version 7.24.

Description

Returns the state of a field's NoExport flag.
The field will not be exported by a submit-form action if the NoExport flag is set.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldNoExport(
 Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldNoExport(
 Index As Long) As Long

 DLL

int DPLGetFormFieldNoExport(int InstanceID, int Index);

Parameters

Index The index of the form field

Return values

0 The field's NoExport flag is not set

1 The field's NoExport flag is set

GetFormFieldPage
Form fields

Description

Returns the page number that the specified form field is on.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldPage(Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldPage(
 Index As Long) As Long

 DLL

int DPLGetFormFieldPage(int InstanceID, int Index);

Parameters

Index The index of the form field to locate

Return values

0 The form field could not be found, or the form field does not have valid page
information

Non-zero The page number of the page that the form field is displayed on

GetFormFieldPrintable
Form fields

Description

Returns 1 if the specified field will be printed.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldPrintable(
 Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldPrintable(
 Index As Long) As Long

 DLL

int DPLGetFormFieldPrintable(int InstanceID, int Index);

Parameters

Index The index of the form field to check

GetFormFieldReadOnly
Form fields

Description

Returns the state of a field's ReadOnly flag.
The user cannot change the value of a form field if the ReadOnly flag is set.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldReadOnly(
 Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldReadOnly(
 Index As Long) As Long

 DLL

int DPLGetFormFieldReadOnly(int InstanceID, int Index);

Parameters

Index The index of the form field

Return values

0 The field's ReadOnly flag is not set

1 The field's ReadOnly flag is set

GetFormFieldRequired
Form fields

Version history

This function was introduced in Quick PDF Library version 7.24.

Description

Returns the state of a field's is Required flag.
If this flag is set the field must have a value when the form is exported by a submit-form action.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldRequired(
 Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldRequired(
 Index As Long) As Long

 DLL

int DPLGetFormFieldRequired(int InstanceID, int Index);

Parameters

Index The index of the form field

Return values

0 The field's Required flag is not set

1 The field's Required flag is set

GetFormFieldRichTextString
Form fields

Version history

This function was introduced in Quick PDF Library version 9.15.

Description

Retrieves the rich text (RV) or default style (DS) string of the specified form field using the given
key. The format of the return value is defined in the PDF Specification under the section titled
"Field Dictionaries".

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldRichTextString(Index: Integer;
 Key: WideString): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldRichTextString(
 Index As Long, Key As String) As String

 DLL

wchar_t * DPLGetFormFieldRichTextString(int InstanceID, int Index,
 wchar_t * Key);

Parameters

Index The index of the required form field. The first form field has an index of 1.

Key The Key value to return.
"RV" = returns the rich text string
"DS" = returns the default style string

GetFormFieldRotation
Form fields

Description

Returns the angle in degrees that the form field is rotated by. This is always a multiple of 90
degrees.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldRotation(
 Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldRotation(
 Index As Long) As Long

 DLL

int DPLGetFormFieldRotation(int InstanceID, int Index);

Parameters

Index The index of the form field to query

GetFormFieldSubCount
Form fields

Description

For radio button, checkbox items and choice fields (scrollable list box or combo box drop-down
list), this function returns the number of possible values the form field can be set to.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldSubCount(
 Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldSubCount(
 Index As Long) As Long

 DLL

int DPLGetFormFieldSubCount(int InstanceID, int Index);

Parameters

Index The index of the form field to examine

Return values

0 The form field could not be found or it does not have sub-values

Non-zero The number of possible values the form field can be set to

GetFormFieldSubDisplayName
Form fields

Version history

This function was introduced in Quick PDF Library version 9.11.

Description

Similar to GetformFieldSubName but returns the display name of the specified choice field item.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldSubDisplayName(Index,
 SubIndex: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldSubDisplayName(
 Index As Long, SubIndex As Long) As String

 DLL

wchar_t * DPLGetFormFieldSubDisplayName(int InstanceID, int Index,
 int SubIndex);

Parameters

Index The index of the form field to examine

SubIndex The index of the sub-value to retrieve

GetFormFieldSubName
Form fields

Description

For radio button, checkbox and choice (scrollable list box or combo box drop-down list) form fields,
this function returns the specified possible value.
For choice fields the GetformFieldSubDisplayName function can be used to retrieve the display
name of the choice item.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldSubName(Index,
 SubIndex: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldSubName(
 Index As Long, SubIndex As Long) As String

 DLL

wchar_t * DPLGetFormFieldSubName(int InstanceID, int Index, int SubIndex);

Parameters

Index The index of the form field to examine

SubIndex The index of the sub-value to retrieve

GetFormFieldSubmitActionString
Form fields

Version history

This function was introduced in Quick PDF Library version 10.14.

Description

Returns the string assocaiated with a FormField submit action action and its specified ActionType
Support ActionTypes
'U' : Returns the URL link string

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldSubmitActionString(
 Index: Integer; ActionType: WideString): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldSubmitActionString(
 Index As Long, ActionType As String) As String

 DLL

wchar_t * DPLGetFormFieldSubmitActionString(int InstanceID, int Index,
 wchar_t * ActionType);

Parameters

Index The index of the form field to examine

ActionType The action type:
U = An action to be performed when the mouse button is released inside the
annotation's active area

GetFormFieldTabOrder
Form fields

Description

Returns the tab order of the specified form field. The first form field on the page has a tab order of
1.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldTabOrder(
 Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldTabOrder(
 Index As Long) As Long

 DLL

int DPLGetFormFieldTabOrder(int InstanceID, int Index);

Parameters

Index The index of the form field

GetFormFieldTabOrderEx
Form fields

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Returns the tab order of the specified form field. Similar to the GetFormFieldTabOrder function
but the order is adjusted to match certain popular PDF viewers.
The first form field on the page has a tab order of 1.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldTabOrderEx(Index,
 Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldTabOrderEx(
 Index As Long, Options As Long) As Long

 DLL

int DPLGetFormFieldTabOrderEx(int InstanceID, int Index, int Options);

Parameters

Index The index of the form field

Options 0 = Acrobat style
1 = Nuance style

Return values

0 The Index parameters was invalid or the Options parameter was out of range

1 Success

GetFormFieldTextFlags
Form fields

Description

Returns certain properties of a text field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldTextFlags(Index,
 ValueKey: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldTextFlags(
 Index As Long, ValueKey As Long) As Long

 DLL

int DPLGetFormFieldTextFlags(int InstanceID, int Index, int ValueKey);

Parameters

Index The index of the form field

ValueKey Indicates which property to analyse:
1 = Multiline
2 = Password
3 = FileSelect
4 = DoNotSpellCheck
5 = DoNotScroll

Return values

0 The flag for the specific property is not turned on. For example, if ValueKey is 5
and the function returns 0 this indicates that the form field is allowed to scroll.

1 The flag is turned on. For example, if ValueKey is 2 and the function returns 1 this
indicates that the form field is a password field.

GetFormFieldTextSize
Form fields

Description

Retrieves the size of the text in the specified form field. A value of 0 indicates that the form field
autosizes the text to fit into the available space.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldTextSize(
 Index: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldTextSize(
 Index As Long) As Double

 DLL

double DPLGetFormFieldTextSize(int InstanceID, int Index);

Parameters

Index The index of the form field to work with. The first form field has an index of 1.

GetFormFieldTitle
Form fields

Description

Returns the title of the specified form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldTitle(
 Index: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldTitle(
 Index As Long) As String

 DLL

wchar_t * DPLGetFormFieldTitle(int InstanceID, int Index);

Parameters

Index The index of the required form field. The first form field has an index of 1.

GetFormFieldType
Form fields

Description

Returns the type of the specified form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldType(Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldType(
 Index As Long) As Long

 DLL

int DPLGetFormFieldType(int InstanceID, int Index);

Parameters

Index The index of the form field

Return values

0 Unknown

1 Text

2 Pushbutton

3 Checkbox

4 Radiobutton

5 Choice

6 Signature

7 Parent

GetFormFieldValue
Form fields

Description

Retrieves the value of the specified form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldValue(
 Index: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldValue(
 Index As Long) As String

 DLL

wchar_t * DPLGetFormFieldValue(int InstanceID, int Index);

Parameters

Index The index of the form field to retrieve the value of

GetFormFieldValueByTitle
Form fields

Description

Returns the value of the form field with the specified title.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldValueByTitle(
 Title: WideString): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldValueByTitle(
 Title As String) As String

 DLL

wchar_t * DPLGetFormFieldValueByTitle(int InstanceID, wchar_t * Title);

Parameters

Title The title of the field.

GetFormFieldVisible
Form fields

Description

Returns 1 if the specified field will be visible when the document is viewed.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldVisible(
 Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldVisible(
 Index As Long) As Long

 DLL

int DPLGetFormFieldVisible(int InstanceID, int Index);

Parameters

Index The index of the form field to check

GetFormFieldWebLink
Form fields

Description

Returns the internet address that the specified form field's action points to, if any.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFieldWebLink(Index: Integer;
 ActionType: WideString): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFieldWebLink(
 Index As Long, ActionType As String) As String

 DLL

wchar_t * DPLGetFormFieldWebLink(int InstanceID, int Index,
 wchar_t * ActionType);

Parameters

Index The index of the form field to change

ActionType The action type:
E = An action to be performed when the cursor enters the annotation's active
area
X = An action to be performed when the cursor exits the annotation's active area
D = An action to be performed when the mouse button is pressed inside the
annotation's active area
U = An action to be performed when the mouse button is released inside the
annotation's active area
Fo = An action to be performed when the annotation receives the input focus
Bl = An action to be performed when the annotation loses the input focus
(blurred)
K = An action to be performed when the user types a keystroke into a text field
or combo box or modifies the selection in a scrollable list box. This allows the
keystroke to be checked for validity and rejected or modified.
F = An action to be performed before the field is formatted to display its current
value. This allows the field's value to be modified before formatting.
V = An action to be performed when the field's value is changed. This allows the
new value to be checked for validity.
C = An action to be performed in order to recalculate the value of this field when
that of another field changes

GetFormFontCount
Fonts, Form fields

Description

Returns the number of fonts available to fields in the form.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFontCount: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFontCount As Long

 DLL

int DPLGetFormFontCount(int InstanceID);

GetFormFontName
Fonts, Form fields

Description

Returns the name of the font with the specified index.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetFormFontName(
 FontIndex: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetFormFontName(
 FontIndex As Long) As String

 DLL

wchar_t * DPLGetFormFontName(int InstanceID, int FontIndex);

Parameters

FontIndex The index of the font to work with. The first font in the form has an index of 1.
Use GetFormFontCount to determine the number of fonts available in the form.

GetGlobalJavaScript
Document properties, JavaScript

Description

Retrieves the global JavaScript for the specified package.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetGlobalJavaScript(
 PackageName: WideString): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetGlobalJavaScript(
 PackageName As String) As String

 DLL

wchar_t * DPLGetGlobalJavaScript(int InstanceID, wchar_t * PackageName);

Parameters

PackageName The JavaScript stored under this package name will be retrieved.

GetHTMLTextHeight
Text, HTML text

Description

Returns the height that a certain block of HTML text will occupy if drawn onto the page. See
Appendix A for details of the supported HTML tags.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetHTMLTextHeight(Width: Double;
 HTMLText: WideString): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetHTMLTextHeight(
 Width As Double, HTMLText As String) As Double

 DLL

double DPLGetHTMLTextHeight(int InstanceID, double Width,
 wchar_t * HTMLText);

Parameters

Width The width of the area the text would be drawn into

HTMLText The HTML to determine the height of. See Appendix A for details of the supported
HTML tags.

GetHTMLTextLineCount
Text, HTML text

Version history

This function was introduced in Quick PDF Library version 7.11.

Description

Returns the number of lines a block of HTML text will take up if it is drawn using the
DrawHTMLText function. See Appendix A for details of the supported HTML tags.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetHTMLTextLineCount(Width: Double;
 HTMLText: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetHTMLTextLineCount(
 Width As Double, HTMLText As String) As Long

 DLL

int DPLGetHTMLTextLineCount(int InstanceID, double Width,
 wchar_t * HTMLText);

Parameters

Width The width of the area the text would be drawn into

HTMLText The HTML text to determine the number of lines of

GetHTMLTextWidth
Text, HTML text

Version history

This function was introduced in Quick PDF Library version 7.11.

Description

Returns the actual horizontal size of a block of HTML text when wrapped to a maximum
width by the DrawHTMLText function. See Appendix A for details of the supported HTML tags.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetHTMLTextWidth(MaxWidth: Double;
 HTMLText: WideString): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetHTMLTextWidth(
 MaxWidth As Double, HTMLText As String) As Double

 DLL

double DPLGetHTMLTextWidth(int InstanceID, double MaxWidth,
 wchar_t * HTMLText);

Parameters

MaxWidth The width of the area the text would be drawn into

HTMLText The HTML text to determine the width of

GetImageID
Image handling

Version history

This function was renamed in Quick PDF Library version 7.11.
The function name in earlier versions was ImageID.

Description

Returns the ID of the specified image.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetImageID(Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetImageID(Index As Long) As Long

 DLL

int DPLGetImageID(int InstanceID, int Index);

Parameters

Index The index of the image. The first image has an index of 1.

Return values

0 The index is out of bounds

Non-zero The ID of the specified image

GetImageListCount
Image handling

Version history

This function was introduced in Quick PDF Library version 8.13.

Description

Returns the number of images in an image list.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetImageListCount(
 ImageListID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetImageListCount(
 ImageListID As Long) As Long

 DLL

int DPLGetImageListCount(int InstanceID, int ImageListID);

Parameters

ImageListID A value returned by the GetPageImageList function

GetImageListItemDataToString
Image handling

Version history

This function was introduced in Quick PDF Library version 8.13.

Description

Returns the image data of the specified image list item as a string of 8-bit bytes.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetImageListItemDataToString(ImageListID,
 ImageIndex, Options: Integer): AnsiString;

 DLL

char * DPLGetImageListItemDataToString(int InstanceID, int ImageListID,
 int ImageIndex, int Options);

Parameters

ImageListID A value returned by the GetPageImageList function

ImageIndex The index of the image in the list. The first image has an index of 1.

Options Reserved for future use. Should be set to 0.

GetImageListItemDataToVariant
Image handling

Version history

This function was introduced in Quick PDF Library version 8.13.

Description

Returns the image data of the specified image list item as a variant byte array.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetImageListItemDataToVariant(
 ImageListID As Long, ImageIndex As Long,
 Options As Long) As Variant

Parameters

ImageListID A value returned by the GetPageImageList function

ImageIndex The index of the image in the list. The first image has an index of 1.

Options Reserved for future use. Should be set to 0.

GetImageListItemDblProperty
Image handling

Version history

This function was introduced in Quick PDF Library version 8.13.

Description

Returns a Double type property of the specified image list item.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetImageListItemDblProperty(ImageListID,
 ImageIndex, PropertyID: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetImageListItemDblProperty(
 ImageListID As Long, ImageIndex As Long,
 PropertyID As Long) As Double

 DLL

double DPLGetImageListItemDblProperty(int InstanceID, int ImageListID,
 int ImageIndex, int PropertyID);

Parameters

ImageListID A value returned by the GetPageImageList function

ImageIndex The index of the image in the list. The first image has an index of 1.

PropertyID 501 = Horizontal co-ordinate of top-left corner
502 = Vertical co-ordinate of top-left corner
503 = Horizontal co-ordinate of top-right corner
504 = Vertical co-ordinate of top-right corner
505 = Horizontal co-ordinate of bottom-right corner
506 = Vertical co-ordinate of bottom-right corner
507 = Horizontal co-ordinate of bottom-left corner
508 = Vertical co-ordinate of bottom-left corner

GetImageListItemIntProperty
Image handling

Version history

This function was introduced in Quick PDF Library version 8.13.

Description

Returns an Integer type property of the specified image list item.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetImageListItemIntProperty(ImageListID,
 ImageIndex, PropertyID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetImageListItemIntProperty(
 ImageListID As Long, ImageIndex As Long,
 PropertyID As Long) As Long

 DLL

int DPLGetImageListItemIntProperty(int InstanceID, int ImageListID,
 int ImageIndex, int PropertyID);

Parameters

ImageListID A value returned by the GetPageImageList function

ImageIndex The index of the image in the list. The first image has an index of 1.

PropertyID 400 = Image type (see ImageType) for values
401 = Width in pixels
402 = Height in pixels
403 = Bits per pixel
404 = Color space type
405 = Image ID (will be 0 if it is an Inline image)
406 = Constant Image ID

Return values

1 JPEG (for image type)
DeviceGray (for color space type)

2 BMP (for image type)
DeviceRGB (for color space type)

3 TIFF (for image type)
DeviceCMYK (for color space type)

4 PNG (for image type)
The selected image is a PNG image. This is only possible when using the
GetPageImageList function where an image has a mask. The library will
create an Transparent PNG file if a mask is found.

-1 Unknown (for color space type)

GetImageMeasureDict
Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Returns the measurement dictionary for the selected image as a MeasureDictID value.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetImageMeasureDict: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetImageMeasureDict As Long

 DLL

int DPLGetImageMeasureDict(int InstanceID);

Return values

0 The measure dictionary of the selected image could not be found

Non-zero A MeasureDictID value

GetImagePageCount
Image handling, Miscellaneous functions

Description

Returns the number of pages in the specified image file. Most images consist of 1 page, but TIFF
images may contain multiple pages.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetImagePageCount(
 FileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetImagePageCount(
 FileName As String) As Long

 DLL

int DPLGetImagePageCount(int InstanceID, wchar_t * FileName);

Parameters

FileName The name of the image file to analyse.

Return values

0 The image file is invalid or does not exist

Non-zero The number of pages in the specified image

GetImagePageCountFromString
Image handling, Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 7.19.

Description

Returns the number of pages in the provided image data. Most images consist of 1 page, but TIFF
images may contain multiple pages.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetImagePageCountFromString(
 const Source: AnsiString): Integer;

 DLL

int DPLGetImagePageCountFromString(int InstanceID, char * Source);

Parameters

Source A string containing the image data. In the ActiveX version of the library this string
must contain 16-bit characters, only the lower 8-bits of each character will be used.

Return values

0 The image data is invalid

Non-zero The number of pages in the image

GetImagePtDataDict
Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Returns the PtData dictionary for the selected image as a PtDataDictID value.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetImagePtDataDict: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetImagePtDataDict As Long

 DLL

int DPLGetImagePtDataDict(int InstanceID);

Return values

0 The PtData dictionary for the selected image could not be found

Non-zero A PtDataDictID value

GetInformation
Document properties

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Get the properties of the selected document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetInformation(Key: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetInformation(
 Key As Long) As String

 DLL

wchar_t * DPLGetInformation(int InstanceID, int Key);

Parameters

Key The property to get:
0 = PDF Version
1 = Author
2 = Title
3 = Subject
4 = Keywords
5 = Creator
6 = Producer
7 = Creation date
8 = Modification date

GetInstalledFontsByCharset
Fonts

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

Returns a list of the names of fonts that are installed. These font names can be used with the
AddTrueTypeFont and AddSubsettedFont functions.
The list is filtered by the specified character set. To show all fonts, set CharsetIndex to 2
(corresponding to DEFAULT_CHARSET).

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetInstalledFontsByCharset(CharsetIndex,
 Options: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetInstalledFontsByCharset(
 CharsetIndex As Long, Options As Long) As String

 DLL

wchar_t * DPLGetInstalledFontsByCharset(int InstanceID, int CharsetIndex,
 int Options);

Parameters

CharsetIndex 1 = ANSI
2 = Default
3 = Symbol
4 = Shift JIS
5 = Hangeul
6 = GB2312
7 = Chinese Big 5
8 = OEM
9 = Johab
10 = Hebrew
11 = Arabic
12 = Greek
13 = Turkish
14 = Vietnamese
15 = Thai
16 = East Europe
17 = Russian
18 = Mac
19 = Baltic

Options 0 = Font names enclosed in double quotes with comma delimiters
1 = Font names in plain text with CRLF delimiters

GetInstalledFontsByCodePage
Fonts

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

Returns a list of the names of fonts that are installed. These font names can be used with the
AddTrueTypeFont and AddSubsettedFont functions.
The list is filtered by the specified code page. To show all fonts, set CodePage to 0 (corresponding
to DEFAULT_CHARSET).

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetInstalledFontsByCodePage(CodePage,
 Options: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetInstalledFontsByCodePage(
 CodePage As Long, Options As Long) As String

 DLL

wchar_t * DPLGetInstalledFontsByCodePage(int InstanceID, int CodePage,
 int Options);

Parameters

CodePage 0 = DEFAULT_CHARSET
437 = OEM_CHARSET
850 = OEM_CHARSET
852 = OEM_CHARSET
874 = THAI_CHARSET
932 = SHIFTJIS_CHARSET
936 = GB2312_CHARSET
949 = HANGEUL_CHARSET
950 = CHINESEBIG5_CHARSET
1250 = EASTEUROPE_CHARSET
1251 = RUSSIAN_CHARSET
1252 = ANSI_CHARSET
1253 = GREEK_CHARSET
1254 = TURKISH_CHARSET
1255 = HEBREW_CHARSET
1256 = ARABIC_CHARSET
1257 = BALTIC_CHARSET
1258 = VIETNAMESE_CHARSET
1361 = JOHAB_CHARSET

Options 0 = Font names enclosed in double quotes with comma delimiters
1 = Font names in plain text with CRLF delimiters

GetKerning
Text, Fonts

Description

Returns the amount of kerning for the specified character pair.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetKerning(CharPair: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetKerning(
 CharPair As String) As Long

 DLL

int DPLGetKerning(int InstanceID, wchar_t * CharPair);

Parameters

CharPair A two-character string containing the characters making the kerning pair, for
example "AW"

Return values

The amount the space between the kerning pair will be reduced by. This is the same
value as shown in graphics programs such as Adobe Illustrator. A value of 1000 is
the same as the height of the text.

GetLatestPrinterNames
Rendering and printing

Version history

This function was introduced in Quick PDF Library version 8.13.

Description

Similar to the GetPrinterNames function but returns the latest list of printers rather than the
cached list that was enumerated when the app started. This function may take some time to
execute depending on the number of network printers installed.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetLatestPrinterNames: WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetLatestPrinterNames As String

 DLL

wchar_t * DPLGetLatestPrinterNames(int InstanceID);

GetMaxObjectNumber
Document properties, Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

Returns the highest object number in the selected document. This is for advanced use.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetMaxObjectNumber: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetMaxObjectNumber As Long

 DLL

int DPLGetMaxObjectNumber(int InstanceID);

GetMeasureDictBoundsCount
Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Returns the number of items in a measurement dictionary Bounds array.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetMeasureDictBoundsCount(
 MeasureDictID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetMeasureDictBoundsCount(
 MeasureDictID As Long) As Long

 DLL

int DPLGetMeasureDictBoundsCount(int InstanceID, int MeasureDictID);

Parameters

MeasureDictID A value returned from the GetImageMeasureDict function

GetMeasureDictBoundsItem
Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Returns an item from a measurement dictionary Bounds array.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetMeasureDictBoundsItem(MeasureDictID,
 ItemIndex: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetMeasureDictBoundsItem(
 MeasureDictID As Long, ItemIndex As Long) As Double

 DLL

double DPLGetMeasureDictBoundsItem(int InstanceID, int MeasureDictID,
 int ItemIndex);

Parameters

MeasureDictID A value returned from the GetImageMeasureDict function

ItemIndex The index of the item to return. The first item has an index of 1.

GetMeasureDictCoordinateSystem
Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Returns the coordinate system type of a measurement dictionary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetMeasureDictCoordinateSystem(
 MeasureDictID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetMeasureDictCoordinateSystem(
 MeasureDictID As Long) As Long

 DLL

int DPLGetMeasureDictCoordinateSystem(int InstanceID, int MeasureDictID);

Parameters

MeasureDictID A value returned from the GetImageMeasureDict function

Return values

0 The MeasureDictID parameter was incorrect

1 The measurement dictionary is a rectiliniar coordinate system (RL)

2 The measurement dictionary is a geospatial coordinate system (GEO)

GetMeasureDictDCSDict
Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Returns the DCS coordinate system dictionary of a measurement dictionary (used for display
purposes) as a CSDictID value.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetMeasureDictDCSDict(
 MeasureDictID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetMeasureDictDCSDict(
 MeasureDictID As Long) As Long

 DLL

int DPLGetMeasureDictDCSDict(int InstanceID, int MeasureDictID);

Parameters

MeasureDictID A value returned from the GetImageMeasureDict function

Return values

0 The MeasureDictID parameter was incorrect

Non-zero A CSDictID value

GetMeasureDictGCSDict
Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Returns the GCS coordinate system dictionary of a measurement dictionary as a CSDictID value.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetMeasureDictGCSDict(
 MeasureDictID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetMeasureDictGCSDict(
 MeasureDictID As Long) As Long

 DLL

int DPLGetMeasureDictGCSDict(int InstanceID, int MeasureDictID);

Parameters

MeasureDictID A value returned from the GetImageMeasureDict function

Return values

0 The MeasureDictID parameter was incorrect

Non-zero A CSDict value

GetMeasureDictGPTSCount
Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Returns the number of items in the GPTS array of a measurement dictionary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetMeasureDictGPTSCount(
 MeasureDictID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetMeasureDictGPTSCount(
 MeasureDictID As Long) As Long

 DLL

int DPLGetMeasureDictGPTSCount(int InstanceID, int MeasureDictID);

Parameters

MeasureDictID A value returned from the GetImageMeasureDict function

GetMeasureDictGPTSItem
Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Returns a value from the GPTS array of a measurement dictionary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetMeasureDictGPTSItem(MeasureDictID,
 ItemIndex: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetMeasureDictGPTSItem(
 MeasureDictID As Long, ItemIndex As Long) As Double

 DLL

double DPLGetMeasureDictGPTSItem(int InstanceID, int MeasureDictID,
 int ItemIndex);

Parameters

MeasureDictID A value returned from the GetImageMeasureDict function

ItemIndex The index of the item. The first item has an index of 1.

GetMeasureDictLPTSCount
Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Returns the number of items in the LPTS array of a measurement dictionary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetMeasureDictLPTSCount(
 MeasureDictID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetMeasureDictLPTSCount(
 MeasureDictID As Long) As Long

 DLL

int DPLGetMeasureDictLPTSCount(int InstanceID, int MeasureDictID);

Parameters

MeasureDictID A value returned from the GetImageMeasureDict function

GetMeasureDictLPTSItem
Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Returns a value from the CPTS array of a measurement dictionary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetMeasureDictLPTSItem(MeasureDictID,
 ItemIndex: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetMeasureDictLPTSItem(
 MeasureDictID As Long, ItemIndex As Long) As Double

 DLL

double DPLGetMeasureDictLPTSItem(int InstanceID, int MeasureDictID,
 int ItemIndex);

Parameters

MeasureDictID A value returned from the GetImageMeasureDict function

ItemIndex The index of the item. The first item has an index of 1.

GetMeasureDictPDU
Measurement and coordinate units

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetMeasureDictPDU(MeasureDictID,
 UnitIndex: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetMeasureDictPDU(
 MeasureDictID As Long, UnitIndex As Long) As Long

 DLL

int DPLGetMeasureDictPDU(int InstanceID, int MeasureDictID, int UnitIndex);

Parameters

MeasureDictID A value returned from the GetImageMeasureDict function

UnitIndex 1 = Linear display units
2 = Area display units
3 = Angular display units

Return values

0 The MeasureDictID parameter was incorrect.

1 Linear units: M (a meter)
Area units: SQM (a square meter)
Angular units: DEG (a degree)

2 Linear units: KM (a kilometer)
Area units: HA (a hectare)
Angular units: GRD (a grad = 0.9 degrees)

3 Linear units: FT (an international foot)
Area units: SQKM (a square kilometer)

4 Linear units: USFT (a U.S. Survey foot)
Area units: SQFT (a square foot)

5 Linear units: MI (an international mile)
Area units: A (a acre)

6 Linear units: MI (an international nautical mile)
Area units: SQMI (a square mile)

GetNamedDestination
Document properties, Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 7.13.

Description

Locates the named destination with the specified name and returns a DestID that can be used with
the GetDestPage, GetDestType and GetDestValue functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetNamedDestination(
 DestName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetNamedDestination(
 DestName As String) As Long

 DLL

int DPLGetNamedDestination(int InstanceID, wchar_t * DestName);

Parameters

DestName The name of the named destination to search for

Return values

0 The specified named destination could not be found

Non-zero A DestID that can be used with the destination functions

GetNextOutline
Outlines

Description

Returns the ID of the outline that is below the specified outline at the same level.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetNextOutline(OutlineID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetNextOutline(
 OutlineID As Long) As Long

 DLL

int DPLGetNextOutline(int InstanceID, int OutlineID);

Parameters

OutlineID The ID of the outline item to work with. This ID is returned by the NewOutline or
NewStaticOutline functions, or retrieved with the GetOutlineID function or
Get*Outline functions.

GetObjectCount
Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 7.16.

Description

Returns the number of raw PDF objects in the document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetObjectCount: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetObjectCount As Long

 DLL

int DPLGetObjectCount(int InstanceID);

GetObjectDecodeError
Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 9.15.

Description

This function can be used to determine if an error was encountered during decoding of the raw PDF
object from the file.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetObjectDecodeError(
 ObjectNumber: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetObjectDecodeError(
 ObjectNumber As Long) As Long

 DLL

int DPLGetObjectDecodeError(int InstanceID, int ObjectNumber);

Parameters

ObjectNumber The number of the object to retrieve. The first object is numbered 1 and the
last object has an object number equal to the result of the GetObjectCount
function.

Return values

0 The object was decoded successfully

1 The object could not be decoded

GetObjectToString
Miscellaneous functions

Version history

This function was renamed in Quick PDF Library version 8.11.
The function name in earlier versions was GetObjectSource.

Description

Returns the raw PDF object data for the specified object number. This is for advanced use only.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetObjectToString(
 ObjectNumber: Integer): AnsiString;

 DLL

char * DPLGetObjectToString(int InstanceID, int ObjectNumber);

Parameters

ObjectNumber The number of the object to retrieve. The first object is numbered 1 and the
last object has an object number equal to the result of the GetObjectCount
function.

GetObjectToVariant
Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Returns the raw PDF object data for the specified object number as a variant byte array. This is for
advanced use only.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetObjectToVariant(
 ObjectNumber As Long) As Variant

Parameters

ObjectNumber The number of the object to retrieve. The first object is numbered 1 and the
last object has an object number equal to the result of the GetObjectCount
function.

GetOpenActionDestination
Document properties

Description

Retrieves the ID of the open action destination, if any. This ID can be used with the GetDestPage,
GetDestType and GetDestValue functions to obtain information about the open action
destination.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetOpenActionDestination: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetOpenActionDestination As Long

 DLL

int DPLGetOpenActionDestination(int InstanceID);

Return values

0 The document does not have an open action destination

Non-zero A DestID that can be used with the GetDestPage, GetDestType and
GetDestValue functions

GetOpenActionJavaScript
Document properties, JavaScript

Description

Retrieves the JavaScript linked to the document's open action.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetOpenActionJavaScript: WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetOpenActionJavaScript As String

 DLL

wchar_t * DPLGetOpenActionJavaScript(int InstanceID);

GetOptionalContentConfigCount
Content Streams and Optional Content Groups

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

Returns the number of optional content configuration dictionaries in the selected document.
The first optional content configuration dictionary is used to specify the initial state of the optional
content groups when the document is first opened by a PDF viewer. Other configuration
dictionaries are used in other circumstances.
The GetOptionalContentConfigState function can be used to determine the state of the optional
content groups as defined by a particular optional content configuration dictionary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetOptionalContentConfigCount: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetOptionalContentConfigCount As Long

 DLL

int DPLGetOptionalContentConfigCount(int InstanceID);

Return values

0 The document does not have any optional content configuration dictionaries.

Non-zero The number of optional content configuration dictionaries in the document.

GetOptionalContentConfigLocked
Content Streams and Optional Content Groups

Version history

This function was introduced in Quick PDF Library version 8.15.

Description

This function is used to determine if an optional content group is locked as defined by the specified
optional content configuration dictionary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetOptionalContentConfigLocked(
 OptionalContentConfigID, OptionalContentGroupID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetOptionalContentConfigLocked(
 OptionalContentConfigID As Long,
 OptionalContentGroupID As Long) As Long

 DLL

int DPLGetOptionalContentConfigLocked(int InstanceID,
 int OptionalContentConfigID, int OptionalContentGroupID);

Parameters

OptionalContentConfigID The first default optional content configuration dictionary has an
ID of 1. Higher numbers are used for other optional content
configuration dictionaries.

OptionalContentGroupID An ID returned by the NewOptionalContentGroup,
GetOptionalContentGroupID or
GetOptionalContentConfigOrderItemID functions

Return values

0 The optional content group is unlocked

1 The optional content group is locked

GetOptionalContentConfigOrderCount
Content Streams and Optional Content Groups

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

Returns the number of items in the order array of the specified optional content configuration
dictionary.
The order array defines a tree structure with labels and optional content group items that can be
used in the user interface of the PDF viewer application.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetOptionalContentConfigOrderCount(
 OptionalContentConfigID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetOptionalContentConfigOrderCount(
 OptionalContentConfigID As Long) As Long

 DLL

int DPLGetOptionalContentConfigOrderCount(int InstanceID,
 int OptionalContentConfigID);

Parameters

OptionalContentConfigID The first default optional content configuration dictionary has an
ID of 1. Higher numbers are used for other optional content
configuration dictionaries.

GetOptionalContentConfigOrderItemID
Content Streams and Optional Content Groups

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

Returns the OptionalContentGroupID for an item in the order array of the specified optional content
configuration dictionary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetOptionalContentConfigOrderItemID(
 OptionalContentConfigID, ItemIndex: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetOptionalContentConfigOrderItemID(
 OptionalContentConfigID As Long, ItemIndex As Long) As Long

 DLL

int DPLGetOptionalContentConfigOrderItemID(int InstanceID,
 int OptionalContentConfigID, int ItemIndex);

Parameters

OptionalContentConfigID The first default optional content configuration dictionary has an
ID of 1. Higher numbers are used for other optional content
configuration dictionaries.

ItemIndex The index number of the item in the order array. The first item
has an index number of 1 and the last item has an index equal to
the value returned by the
GetOptionalContentConfigOrderCount function.

Return values

0 The specified item could not be found or it is a label item and
does not have an associated optional content group.

Non-zero The OptionalContentGroupID of the item

GetOptionalContentConfigOrderItemLabel
Content Streams and Optional Content Groups

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

Returns the label text for an item in the order array of the specified optional content configuration
dictionary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetOptionalContentConfigOrderItemLabel(
 OptionalContentConfigID, ItemIndex: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetOptionalContentConfigOrderItemLabel(
 OptionalContentConfigID As Long, ItemIndex As Long) As String

 DLL

wchar_t * DPLGetOptionalContentConfigOrderItemLabel(int InstanceID,
 int OptionalContentConfigID, int ItemIndex);

Parameters

OptionalContentConfigID The first default optional content configuration dictionary has an
ID of 1. Higher numbers are used for other optional content
configuration dictionaries.

ItemIndex The index number of the item in the order array. The first item
has an index number of 1 and the last item has an index equal to
the value returned by the
GetOptionalContentConfigOrderCount function.

GetOptionalContentConfigOrderItemLevel
Content Streams and Optional Content Groups

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

Returns the hierarchical level for an item in the order array of the specified optional content
configuration dictionary.
The first item has a level of 1.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetOptionalContentConfigOrderItemLevel(
 OptionalContentConfigID, ItemIndex: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetOptionalContentConfigOrderItemLevel(
 OptionalContentConfigID As Long, ItemIndex As Long) As Long

 DLL

int DPLGetOptionalContentConfigOrderItemLevel(int InstanceID,
 int OptionalContentConfigID, int ItemIndex);

Parameters

OptionalContentConfigID The first default optional content configuration dictionary has an
ID of 1. Higher numbers are used for other optional content
configuration dictionaries.

ItemIndex The index number of the item in the order array. The first item
has an index number of 1 and the last item has an index equal to
the value returned by the
GetOptionalContentConfigOrderCount function.

Return values

0 The specified item could not be found

Non-zero The level of the specified item

GetOptionalContentConfigOrderItemType
Content Streams and Optional Content Groups

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

Returns the item type for an item in the order array of the specified optional content configuration
dictionary.
Items are either optional content groups or text labels.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetOptionalContentConfigOrderItemType(
 OptionalContentConfigID, ItemIndex: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetOptionalContentConfigOrderItemType(
 OptionalContentConfigID As Long, ItemIndex As Long) As Long

 DLL

int DPLGetOptionalContentConfigOrderItemType(int InstanceID,
 int OptionalContentConfigID, int ItemIndex);

Parameters

OptionalContentConfigID The first default optional content configuration dictionary has an
ID of 1. Higher numbers are used for other optional content
configuration dictionaries.

ItemIndex The index number of the item in the order array. The first item
has an index number of 1 and the last item has an index equal to
the value returned by the
GetOptionalContentConfigOrderCount function.

Return values

0 The specified item could not be found

1 The specified item is an optional content group. The
GetOptionalContentConfigOrderItemID function can be used
to detemine the OptionalContentGroupID.

2 The specified item is a text label.

GetOptionalContentConfigState
Content Streams and Optional Content Groups

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

This function is used to determine the state of an optional content group as defined by the
specified optional content configuration dictionary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetOptionalContentConfigState(
 OptionalContentConfigID, OptionalContentGroupID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetOptionalContentConfigState(
 OptionalContentConfigID As Long,
 OptionalContentGroupID As Long) As Long

 DLL

int DPLGetOptionalContentConfigState(int InstanceID,
 int OptionalContentConfigID, int OptionalContentGroupID);

Parameters

OptionalContentConfigID The first default optional content configuration dictionary has an
ID of 1. Higher numbers are used for other optional content
configuration dictionaries.

OptionalContentGroupID An ID returned by the NewOptionalContentGroup,
GetOptionalContentGroupID or
GetOptionalContentConfigOrderItemID functions

Return values

0 The OptionalContentConfigID parameter or the
OptionalContentGroupID parameter is not valid.

1 The state of the optional content group is set to ON when this
optional content configuration dictionary is applied.

2 The state of the optional content group is set to OFF when this
optional content configuration dictionary is applied.

3 The state of the optional content group is not changed when this
optional content configuration dictionary is applied.

GetOptionalContentGroupID
Content Streams and Optional Content Groups

Description

Returns the ID of the optional content group with the specified index.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetOptionalContentGroupID(
 Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetOptionalContentGroupID(
 Index As Long) As Long

 DLL

int DPLGetOptionalContentGroupID(int InstanceID, int Index);

Parameters

Index The index of the optional content group. The first group has an index of 1. Use the
OptionalContentGroupCount function to determine the number of optional content
groups in the document.

Return values

0 The Index parameter was out of range

GetOptionalContentGroupName
Content Streams and Optional Content Groups

Description

Returns the name of the specified optional content group.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetOptionalContentGroupName(
 OptionalContentGroupID: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetOptionalContentGroupName(
 OptionalContentGroupID As Long) As String

 DLL

wchar_t * DPLGetOptionalContentGroupName(int InstanceID,
 int OptionalContentGroupID);

Parameters

OptionalContentGroupID An ID returned by the NewOptionalContentGroup,
GetOptionalContentGroupID or
GetOptionalContentConfigOrderItemID functions

GetOptionalContentGroupPrintable
Content Streams and Optional Content Groups

Version history

This function was introduced in Quick PDF Library version 7.26.

Description

Returns the printable state of the specified optional content group.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetOptionalContentGroupPrintable(
 OptionalContentGroupID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetOptionalContentGroupPrintable(
 OptionalContentGroupID As Long) As Long

 DLL

int DPLGetOptionalContentGroupPrintable(int InstanceID,
 int OptionalContentGroupID);

Parameters

OptionalContentGroupID An ID returned by the NewOptionalContentGroup,
GetOptionalContentGroupID or
GetOptionalContentConfigOrderItemID functions

Return values

0 The specified optional content group is not printable

1 The specified optional content group is printable

GetOptionalContentGroupVisible
Content Streams and Optional Content Groups

Version history

This function was introduced in Quick PDF Library version 7.26.

Description

Returns the visible state of the specified optional content group.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetOptionalContentGroupVisible(
 OptionalContentGroupID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetOptionalContentGroupVisible(
 OptionalContentGroupID As Long) As Long

 DLL

int DPLGetOptionalContentGroupVisible(int InstanceID,
 int OptionalContentGroupID);

Parameters

OptionalContentGroupID An ID returned by the NewOptionalContentGroup,
GetOptionalContentGroupID or
GetOptionalContentConfigOrderItemID functions

Return values

0 The specified optional content group is not visible

1 The specified optional content group is visible

GetOrigin
Measurement and coordinate units

Description

Returns the co-ordinate system origin as set with the SetOrigin function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetOrigin: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetOrigin As Long

 DLL

int DPLGetOrigin(int InstanceID);

GetOutlineActionID
Annotations and hotspot links, Outlines

Version history

This function was introduced in Quick PDF Library version 7.16.

Description

This function will return an ActionID if the specified outline has an action dictionary.
The ActionID can be used with the GetActionType function and can also be compared to the
values returned by GetAnnotActionID to determine if an outline action is shared with an
annotation action.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetOutlineActionID(
 OutlineID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetOutlineActionID(
 OutlineID As Long) As Long

 DLL

int DPLGetOutlineActionID(int InstanceID, int OutlineID);

Parameters

OutlineID The ID of the outline as returned by the NewOutline function. Alternatively, use
the GetOutlineID function to get a valid outline ID.

GetOutlineColor
Color, Outlines

Version history

This function was introduced in Quick PDF Library version 7.12.

Description

Returns the color component of the outline as a value between 0 and 1.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetOutlineColor(OutlineID,
 ColorComponent: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetOutlineColor(
 OutlineID As Long, ColorComponent As Long) As Double

 DLL

double DPLGetOutlineColor(int InstanceID, int OutlineID,
 int ColorComponent);

Parameters

OutlineID The ID of the outline as returned by the NewOutline function.
Alternatively, use the GetOutlineID function to get a valid outline ID.

ColorComponent The component of the color:
0 = Red
1 = Green
2 = Blue

GetOutlineDest
Outlines

Description

Retrieves information about the destination the specified outline links to.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetOutlineDest(OutlineID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetOutlineDest(
 OutlineID As Long) As Long

 DLL

int DPLGetOutlineDest(int InstanceID, int OutlineID);

Parameters

OutlineID The ID of the outline as returned by the NewOutline function. Alternatively, use
the GetOutlineID function to get a valid outline ID.

Return values

0 The outline does not have a valid destination or the outline could not be found

Non-zero A destination ID (or DestID) that can be used with the GetDestPage,
GetDestType and GetDestValue functions

GetOutlineID
Outlines

Version history

This function was renamed in Quick PDF Library version 7.11.
The function name in earlier versions was OutlineID.

Description

Returns the Outline ID of the outline item (bookmark) with the specified index. The first outline
item has an index of 1.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetOutlineID(Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetOutlineID(
 Index As Long) As Long

 DLL

int DPLGetOutlineID(int InstanceID, int Index);

Parameters

Index The index of the outline item to retrieve the ID of. The first outline item has an index
of 1.

GetOutlineJavaScript
JavaScript, Outlines

Version history

This function was introduced in Quick PDF Library version 7.12.

Description

Returns the JavaScript associated with the outline, if any.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetOutlineJavaScript(
 OutlineID: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetOutlineJavaScript(
 OutlineID As Long) As String

 DLL

wchar_t * DPLGetOutlineJavaScript(int InstanceID, int OutlineID);

Parameters

OutlineID The ID of the outline as returned by the NewOutline function. Alternatively, use
the GetOutlineID function to get a valid outline ID.

GetOutlineObjectNumber
Outlines

Version history

This function was introduced in Quick PDF Library version 7.22.

Description

Returns the PDF object number of the specified outline item.
This function is for advanced use only.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetOutlineObjectNumber(
 OutlineID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetOutlineObjectNumber(
 OutlineID As Long) As Long

 DLL

int DPLGetOutlineObjectNumber(int InstanceID, int OutlineID);

Parameters

OutlineID The ID of the outline as returned by the NewOutline function. Alternatively, use
the GetOutlineID function to get a valid outline ID.

GetOutlineOpenFile
Outlines

Description

Returns the file name that the outline links to, if any.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetOutlineOpenFile(
 OutlineID: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetOutlineOpenFile(
 OutlineID As Long) As String

 DLL

wchar_t * DPLGetOutlineOpenFile(int InstanceID, int OutlineID);

Parameters

OutlineID The ID of the outline as returned by the NewOutline function. Alternatively, use
the GetOutlineID function to get a valid outline ID.

GetOutlinePage
Outlines

Description

Returns the page number that the outline links to.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetOutlinePage(OutlineID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetOutlinePage(
 OutlineID As Long) As Long

 DLL

int DPLGetOutlinePage(int InstanceID, int OutlineID);

Parameters

OutlineID The ID of the outline as returned by the NewOutline function. Alternatively, use
the GetOutlineID function to get a valid outline ID.

GetOutlineStyle
Outlines

Version history

This function was introduced in Quick PDF Library version 7.12.

Description

Returns the style of the outline.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetOutlineStyle(
 OutlineID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetOutlineStyle(
 OutlineID As Long) As Long

 DLL

int DPLGetOutlineStyle(int InstanceID, int OutlineID);

Parameters

OutlineID The ID of the outline as returned by the NewOutline function. Alternatively, use
the GetOutlineID function to get a valid outline ID.

Return values

0 Normal

1 Italic

2 Bold

3 Bold Italic

GetOutlineWebLink
Outlines

Description

Returns the web link (internet URL) that the outline links to, if any.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetOutlineWebLink(
 OutlineID: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetOutlineWebLink(
 OutlineID As Long) As String

 DLL

wchar_t * DPLGetOutlineWebLink(int InstanceID, int OutlineID);

Parameters

OutlineID The ID of the outline as returned by the NewOutline function. Alternatively, use
the GetOutlineID function to get a valid outline ID.

GetPageBox
Page properties

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Returns the dimensions of the selected page's boundary rectangles.
The MediaBox represents the physical medium of the page.
The CropBox represents the visible region of the page, the contents will be clipped to this region.
The BleedBox is similar to the CropBox, but is the rectangle used in a production environment.
The TrimBox indicates the intended dimensions of the finished page after trimming, and the ArtBox
defines the extent of the page's meaningful content as intended by the page's creator.
If the document does not have a CropBox but it does have a MediaBox then the CropBox will be
the same as the MediaBox. If the document does not have any of the other boxes this function will
return the values from the CropBox.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetPageBox(BoxType,
 Dimension: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetPageBox(BoxType As Long,
 Dimension As Long) As Double

 DLL

double DPLGetPageBox(int InstanceID, int BoxType, int Dimension);

Parameters

BoxType 1 = MediaBox
2 = CropBox
3 = BleedBox
4 = TrimBox
5 = ArtBox

Dimension 0 = Left
1 = Top
2 = Width
3 = Height
4 = Right
5 = Bottom

GetPageColorSpaces
Color, Page properties

Version history

This function was introduced in Quick PDF Library version 8.14.

Description

Returns a CSV string containing the list of color spaces defined in the resource tree of the selected
page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetPageColorSpaces(
 Options: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetPageColorSpaces(
 Options As Long) As String

 DLL

wchar_t * DPLGetPageColorSpaces(int InstanceID, int Options);

Parameters

Options This parameter should be set to 0.

GetPageContentToString
Page properties, Page manipulation

Version history

This function was renamed in Quick PDF Library version 8.11.
The function name in earlier versions was GetPageContent.

Description

This function returns the PDF page description commands which make up the content of the
selected page. This is for advanced use only, and will probably be meaningless unless you have an
understanding of the Adobe PDF specification.
Previous versions of Quick PDF Library only returned the content of the selected content stream
part.
From version 8.11 this function returns the content of the entire page and the
GetContentStreamToString function can be used to retrieve the PDF page description commands
of the content stream part selected with the SelectContentStream function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetPageContentToString: AnsiString;

 DLL

char * DPLGetPageContentToString(int InstanceID);

GetPageContentToVariant
Page properties, Page manipulation

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

This function returns the PDF page description commands which make up the content of the
selected page. This is for advanced use only, and will probably be meaningless unless you have an
understanding of the Adobe PDF specification.
This function returns the content of the entire page regardless of the number of content stream
parts.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetPageContentToVariant As Variant

GetPageImageList
Image handling, Page properties

Version history

This function was introduced in Quick PDF Library version 8.13.

Description

This function finds all the images on the selected page and returns an ImageListID that can be
used with the GetImageListCount, GetImageListItemIntProperty,
GetImageListItemDblProperty, GetImageListItemDataToString,
GetImageListItemDataToVariant and SaveImageListItemDataToFile functions.
As of version 10.13 will include Inline images but the ImageID will be 0 for any inline image which
means that any inline images cannot used with ReplaceImage or ClearImage functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetPageImageList(Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetPageImageList(
 Options As Long) As Long

 DLL

int DPLGetPageImageList(int InstanceID, int Options);

Parameters

Options Reserved for future use, should be set to 0.

Return values

0 The images on the page could not be enumerated.

Non-zero An ImageListID value

GetPageJavaScript
Color, JavaScript, Page properties

Description

Retrieves the JavaScript linked to the specified page event.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetPageJavaScript(
 ActionType: WideString): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetPageJavaScript(
 ActionType As String) As String

 DLL

wchar_t * DPLGetPageJavaScript(int InstanceID, wchar_t * ActionType);

Parameters

ActionType Retrieves the JavaScript linked to this action:
"O" = (capital letter O) This event occurs when the page is opened
"C" = This event occurs when the page is closed

GetPageLGIDictContent
Page properties, Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 7.15.

Description

Returns the content of the specified LGIDict dictionary on the selected page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetPageLGIDictContent(
 DictIndex: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetPageLGIDictContent(
 DictIndex As Long) As String

 DLL

wchar_t * DPLGetPageLGIDictContent(int InstanceID, int DictIndex);

Parameters

DictIndex The index of the dictionary. The first dictionary has an index of 1. Use the
LGIDictCount function to determine the total number of LGIDict dictionaries
attached to the selected page.

GetPageLGIDictCount
Page properties, Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 7.15.

Description

Returns the number of LGIDict dictionaries attached to the selected page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetPageLGIDictCount: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetPageLGIDictCount As Long

 DLL

int DPLGetPageLGIDictCount(int InstanceID);

GetPageLabel
Page properties

Description

Returns the page label for the specified page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetPageLabel(Page: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetPageLabel(
 Page As Long) As String

 DLL

wchar_t * DPLGetPageLabel(int InstanceID, int Page);

Parameters

Page The number of the page to retrieve the page number of

GetPageLayout
Document properties

Description

Returns the initial page layout of the selected document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetPageLayout: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetPageLayout As Long

 DLL

int DPLGetPageLayout(int InstanceID);

Return values

0 Single page

1 One column

2 Two columns, odd-numbered pages on the left

3 Two columns, odd-numbered pages on the right

4 Two pages, odd-numbered pages on the left

5 Two pages, odd-numbered pages on the right

6 No preference set in document

GetPageMetricsToString
Page properties

Version history

This function was introduced in Quick PDF Library version 9.14.

Description

Returns the dimensions (MediaBox and CropBox) and rotation of the specified page range in the
document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetPageMetricsToString(StartPage, EndPage,
 Options: Integer): AnsiString;

 DLL

char * DPLGetPageMetricsToString(int InstanceID, int StartPage,
 int EndPage, int Options);

Parameters

StartPage The first page in the range

EndPage The last page in the range

Options 1 = Binary output
Nine double values per page are streamed in a continuous array. For each page
there are the elements of the MediaBox, the elements of the CropBox and the
value of the Rotation entry.
2 = Text output
The values are displayed in text format, separated by tab (char 9) characters and
with CRLF after each page.

GetPageMode
Document properties

Description

Returns the initial page mode of the document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetPageMode: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetPageMode As Long

 DLL

int DPLGetPageMode(int InstanceID);

Return values

0 Normal view

1 Show the outlines pane

2 Show the thumbnails pane

3 Show the document in full screen mode

4 Optional content group panel visible

5 Attachments panel visible

GetPageText
Extraction, Page manipulation

Description

This function provides two different methods for extracting text from the selected page, and
presents the results in a variety of formats.
The SetTextExtractionWordGap, SetTextExtractionOptions and SetTextExtractionArea
functions can be used to adjust the text extraction process.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetPageText(
 ExtractOptions: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetPageText(
 ExtractOptions As Long) As String

 DLL

wchar_t * DPLGetPageText(int InstanceID, int ExtractOptions);

Parameters

ExtractOptions Using the standard text extraction algorithm:
0 = Extract text in human readable format
1 = Deprecated
2 = Return a CSV string including font, color, size and position of each piece
of text on the page
Using the more accurate but slower text extraction algorithm:
3 = Return a CSV string for each piece of text on the page with the following
format:
Font Name, Text Color, Text Size, X1, Y1, X2, Y2, X3, Y3, X4, Y4, Text
The co-ordinates are the four points bounding the text, measured using the
units set with the SetMeasurementUnits function and the origin set with
the SetOrigin function. Co-ordinate order is anti-clockwise with the bottom
left corner first.
4 = Similar to option 3, but individual words are returned, making searching
for words easier
5 = Similar to option 3 but character widths are output after each block of
text
6 = Similar to option 4 but character widths are output after each line of text
7 = Extract text in human readable format with improved accuracy compared
to option 0
8 = Similar output format as option 0 but using the more accurate algorithm.
Returns unformatted lines.

Return values

The text of the selected page, or an empty string if a problem occurred.
Lines are separated with CR-LF characters.

GetPageUserUnit
Page properties

Description

Returns the UserUnit for the page scaling. See SetPageUserUnit for a description of this value.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetPageUserUnit: Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetPageUserUnit As Double

 DLL

double DPLGetPageUserUnit(int InstanceID);

Return values

UserUnit The value of UserUnit set in the PDF. Default = 1.0

GetPageViewPortCount
Page properties, Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.13.

Description

Returns the number of viewports defined for the selected page.
The GetPageViewPortID function can be used to obtain a ViewPortID that can be used with the
GetViewPortName and GetViewPortMeasureDict functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetPageViewPortCount: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetPageViewPortCount As Long

 DLL

int DPLGetPageViewPortCount(int InstanceID);

GetPageViewPortID
Page properties, Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.13.

Description

Returns a ViewPortID value for the specified viewport of the selected page.
This value can be used with the GetViewPortName and GetViewPortMeasureDict functions.
Use the GetPageViewPortCount function to determine the number of viewports on the page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetPageViewPortID(Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetPageViewPortID(
 Index As Long) As Long

 DLL

int DPLGetPageViewPortID(int InstanceID, int Index);

Parameters

Index The index of the viewport. The first viewport on the page has an index value of 1.

Return values

0 The view port at the specified index could not be found

Non-zero A ViewPortID value

GetParentOutline
Outlines

Description

Returns the ID of the outline that is the parent of the specified outline.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetParentOutline(
 OutlineID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetParentOutline(
 OutlineID As Long) As Long

 DLL

int DPLGetParentOutline(int InstanceID, int OutlineID);

Parameters

OutlineID The ID of the outline item to work with. This ID is returned by the NewOutline or
NewStaticOutline functions, or retrieved with the GetOutlineID function or
Get*Outline functions.

GetPrevOutline
Outlines

Description

Returns the ID of the outline that is above the specified outline at the same level.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetPrevOutline(OutlineID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetPrevOutline(
 OutlineID As Long) As Long

 DLL

int DPLGetPrevOutline(int InstanceID, int OutlineID);

Parameters

OutlineID The ID of the outline item to work with. This ID is returned by the NewOutline or
NewStaticOutline functions, or retrieved with the GetOutlineID function or
Get*Outline functions.

GetPrintPreviewBitmapToString
Rendering and printing

Version history

This function was introduced in Quick PDF Library version 9.16.

Description

Returns a binary string containing a BMP image representing a preview of how printing will look.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetPrintPreviewBitmapToString(
 PrinterName: WideString; PreviewPage, PrintOptions, MaxDimension,
 PreviewOptions: Integer): AnsiString;

 DLL

char * DPLGetPrintPreviewBitmapToString(int InstanceID,
 wchar_t * PrinterName, int PreviewPage, int PrintOptions,
 int MaxDimension, int PreviewOptions);

Parameters

PrinterName The name of the printer to use for printing. This is the name that appears in
the Windows Print Manager. Use the GetPrinterNames function to return a
list of valid printers on the system. A value returned by the
NewCustomPrinter function can also be used here.

PreviewPage The page number to preview

PrintOptions Use the PrintOptions function to obtain a value for this parameter

MaxDimension The maximum width or height of the preview bitmap

PreviewOptions Reserved for future use, should be set to zero.

GetPrintPreviewBitmapToVariant
Rendering and printing

Version history

This function was introduced in Quick PDF Library version 9.16.

Description

Returns a byte array containing a BMP image representing a preview of how printing will look.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetPrintPreviewBitmapToVariant(
 PrinterName As String, PreviewPage As Long,
 PrintOptions As Long, MaxDimension As Long,
 PreviewOptions As Long) As Variant

Parameters

PrinterName The name of the printer to use for printing. This is the name that appears in
the Windows Print Manager. Use the GetPrinterNames function to return a
list of valid printers on the system. A value returned by the
NewCustomPrinter function can also be used here.

PreviewPage The page number to preview

PrintOptions Use the PrintOptions function to obtain a value for this parameter

MaxDimension The maximum width or height of the preview bitmap

PreviewOptions Reserved for future use, should be set to zero.

GetPrinterBins
Rendering and printing

Description

This function returns a string containing the bin numbers and names for all the bins (paper trays)
available for the specified printer. The string returned contains a line of text for each bin, the lines
of text are separated with CR/LF characters. Each line contains a numeric bin number, a comma,
and the name of the bin, in double quotes. The bin numbers can be used with the
SetupCustomPrinter function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetPrinterBins(
 PrinterName: WideString): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetPrinterBins(
 PrinterName As String) As String

 DLL

wchar_t * DPLGetPrinterBins(int InstanceID, wchar_t * PrinterName);

Parameters

PrinterName The name of the printer to query. This is the name that appears in the Windows
Print Manager. Use the GetPrinterNames function to return a list of valid
printers on the system. A value returned by the NewCustomPrinter function
can also be used here.

GetPrinterDevModeToString
Rendering and printing

Version history

This function was introduced in Quick PDF Library version 8.12.

Description

Returns a binary string containing the DEVMODE structure for the specified printer.
Use the SetPrinterDevModeFromString function to apply this DEVMODE structure during the
printing process.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetPrinterDevModeToString(
 PrinterName: WideString): AnsiString;

 DLL

char * DPLGetPrinterDevModeToString(int InstanceID, wchar_t * PrinterName);

Parameters

PrinterName The name of the printer to use for printing. This is the name that appears in
the Windows Print Manager. Use the GetPrinterNames function to return a list
of valid printers on the system. A value returned by the NewCustomPrinter
function can also be used here.

GetPrinterDevModeToVariant
Rendering and printing

Version history

This function was introduced in Quick PDF Library version 8.12.

Description

Returns a variant byte array containing the DEVMODE structure for the specified printer.
Use the SetPrinterDevModeFromVariant function to apply this DEVMODE structure during the
printing process.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetPrinterDevModeToVariant(
 PrinterName As String) As Variant

Parameters

PrinterName The name of the printer to use for printing. This is the name that appears in
the Windows Print Manager. Use the GetPrinterNames function to return a list
of valid printers on the system. A value returned by the NewCustomPrinter
function can also be used here.

GetPrinterMediaTypes
Rendering and printing

Version history

This function was introduced in Quick PDF Library version 8.14.

Description

This function returns a string containing the media type numbers and names for all the media
types available for the specified printer. The string returned contains a line of text for each media
type, the lines of text are separated with CR/LF characters. Each line contains a numeric media
type number, a comma, and the name of the media type, in double quotes.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetPrinterMediaTypes(
 PrinterName: WideString): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetPrinterMediaTypes(
 PrinterName As String) As String

 DLL

wchar_t * DPLGetPrinterMediaTypes(int InstanceID, wchar_t * PrinterName);

Parameters

PrinterName The name of the printer to query. This is the name that appears in the Windows
Print Manager. Use the GetPrinterNames function to return a list of valid
printers on the system. A value returned by the NewCustomPrinter function
can also be used here.

GetPrinterNames
Rendering and printing

Description

Returns a CSV string containing the names of all the available printers on the system. The result is
the cached list that was enumerated when the app was started. The new GetLatestPrinterNames
function returns the latest list of printers.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetPrinterNames: WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetPrinterNames As String

 DLL

wchar_t * DPLGetPrinterNames(int InstanceID);

GetRenderScale
Rendering and printing

Version history

This function was introduced in Quick PDF Library version 7.22.

Description

Returns the render scale as set by the SetRenderScale function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetRenderScale: Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetRenderScale As Double

 DLL

double DPLGetRenderScale(int InstanceID);

GetSignProcessByteRange
Security and Signatures

Version history

This function was introduced in Quick PDF Library version 9.15.

Description

Returns an element of the byte range array of a passthough digital signature.
The values should be handled as 32-bit unsigned integers with two values combined to form a
64-bit file position.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetSignProcessByteRange(SignProcessID,
 ArrayPosition: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetSignProcessByteRange(
 SignProcessID As Long, ArrayPosition As Long) As Long

 DLL

int DPLGetSignProcessByteRange(int InstanceID, int SignProcessID,
 int ArrayPosition);

Parameters

SignProcessID A value returned by the NewSignProcessFromFile,
NewSignProcessFromStream or NewSignProcessFromString functions.

ArrayPosition 1 = ByteArray[0] low 32-bits
2 = ByteArray[1] low 32-bits
3 = ByteArray[2] low 32-bits
4 = ByteArray[3] low 32-bits
5 = ByteArray[0] high 32-bits
6 = ByteArray[1] high32-bits
7 = ByteArray[2] high 32-bits
8 = ByteArray[3] high 32-bits

GetSignProcessResult
Security and Signatures

Version history

This function was introduced in Quick PDF Library version 9.14.

Description

Returns the signing result of a digital signature process.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetSignProcessResult(
 SignProcessID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetSignProcessResult(
 SignProcessID As Long) As Long

 DLL

int DPLGetSignProcessResult(int InstanceID, int SignProcessID);

Parameters

SignProcessID A value returned by the NewSignProcessFromFile,
NewSignProcessFromStream or NewSignProcessFromString functions.

Return values

1 The file was signed successfully

2 Input PDF not found

3 Input PDF cannot be read

4 Input PDF password incorrect

5 Certificate file not found

6 Certificate file is invalid

7 Incorrect certificate password

8 Unknown certificate format

9 No private key found in certificate file

10 Could not write output file

11 Could not apply signature

12 The signature field name was blank

GetStringListCount
Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Returns the number of strings in the specified string list.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetStringListCount(
 StringListID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetStringListCount(
 StringListID As Long) As Long

 DLL

int DPLGetStringListCount(int InstanceID, int StringListID);

Parameters

StringListID The ID of the string list as returned by the CheckFileCompliance function.

Return values

0 There are no strings in the specified string list.

Non-zero The number of strings in the list.

GetStringListItem
Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Returns an item from the specified string list.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetStringListItem(StringListID,
 ItemIndex: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetStringListItem(
 StringListID As Long, ItemIndex As Long) As String

 DLL

wchar_t * DPLGetStringListItem(int InstanceID, int StringListID,
 int ItemIndex);

Parameters

StringListID The ID of the string list as returned by the CheckFileCompliance function.

ItemIndex The index of the item to return. The first item in the list has an index value of 1.
The last item in the list has an index value equal to the return value of the
GetStringListCount function.

GetTabOrderMode
Form fields, Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 9.16.

Description

This function returns the current tabbing order for all the annotations and formfields on the
currently selected page.
If you use SetFormFieldTabOrder then you should set the tabbing order to 'S'tructure mode for
the required pages.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetTabOrderMode: WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetTabOrderMode As String

 DLL

wchar_t * DPLGetTabOrderMode(int InstanceID);

Return values

'S' Structure mode (The order the Annots are defined)

'R' Row mode (Left to right, top to bottom order)

'C' Column mode (Top to bottom, left to right order)

'' (Empty String) No tabbing order has been defined

GetTableCellDblProperty
Page layout

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Returns a numeric property of the specified table cell.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetTableCellDblProperty(TableID, RowNumber,
 ColumnNumber, Tag: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetTableCellDblProperty(
 TableID As Long, RowNumber As Long, ColumnNumber As Long,
 Tag As Long) As Double

 DLL

double DPLGetTableCellDblProperty(int InstanceID, int TableID,
 int RowNumber, int ColumnNumber, int Tag);

Parameters

TableID A TableID returned by the CreateTable function

RowNumber The the row number of the cell. Top row is row number 1.

ColumnNumber The the column number of the cell. Left most column is column number 1.

Tag 101 to 104 = Left, top, width and height of cell
105 = Text size
106 = Red or cyan component of the background color
107 = Green or magenta component of the background color
108 = Blue or yellow component of the background color
109 = Black component of the background color
110 = Red or cyan component of the text color
111 = Green or magenta component of the text color
112 = Blue or yellow component of the text color
113 = Black component of the text color
114 to 117 = Red or cyan component of the left, top, right and bottom
border
118 to 121 = Green or magenta component of the left, top, right and
bottom border
122 to 125 = Blue or yellow component of the left, top, right and bottom
border
126 to 129 = Black component of the left, top, right and bottom border
130 to 133 = Padding of the edge next to the left, top, right and bottom
border
134 to 137 = Width of the left, top, right and bottom border

GetTableCellIntProperty
Page layout

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Returns an integer property of the specified table cell.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetTableCellIntProperty(TableID, RowNumber,
 ColumnNumber, Tag: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetTableCellIntProperty(
 TableID As Long, RowNumber As Long, ColumnNumber As Long,
 Tag As Long) As Long

 DLL

int DPLGetTableCellIntProperty(int InstanceID, int TableID, int RowNumber,
 int ColumnNumber, int Tag);

Parameters

TableID A TableID returned by the CreateTable function

RowNumber The the row number of the cell. Top row is row number 1.

ColumnNumber The the column number of the cell. Left most column is column number 1.

Tag 201 = Cell alignment (see the SetTableCellAlignment function)
202 = Merged cell row span
203 = Merged cell column span
204 = Number of color components in the background color (3 for RGB, 4
for CMYK)
205 = Number of color components in the text color (3 for RGB, 4 for CMYK)
206 to 209 = Number of color components in the left, top, right and bottom
border color (3 for RGB, 4 for CMYK)

GetTableCellStrProperty
Page layout

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Returns a string property of the specified table cell.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetTableCellStrProperty(TableID, RowNumber,
 ColumnNumber, Tag: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetTableCellStrProperty(
 TableID As Long, RowNumber As Long, ColumnNumber As Long,
 Tag As Long) As String

 DLL

wchar_t * DPLGetTableCellStrProperty(int InstanceID, int TableID,
 int RowNumber, int ColumnNumber, int Tag);

Parameters

TableID A TableID returned by the CreateTable function

RowNumber The the row number of the cell. Top row is row number 1.

ColumnNumber The the column number of the cell. Left most column is column number 1.

Tag 301 = Cell contents

GetTableColumnCount
Page layout

Version history

This function was introduced in Quick PDF Library version 7.16.

Description

Returns the number of columns in the specified table.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetTableColumnCount(
 TableID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetTableColumnCount(
 TableID As Long) As Long

 DLL

int DPLGetTableColumnCount(int InstanceID, int TableID);

Parameters

TableID A TableID returned by the CreateTable function

GetTableLastDrawnRow
Page layout

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Returns the row number of the last row that was drawn onto the page by the DrawTableRows
function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetTableLastDrawnRow(
 TableID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetTableLastDrawnRow(
 TableID As Long) As Long

 DLL

int DPLGetTableLastDrawnRow(int InstanceID, int TableID);

Parameters

TableID A TableID returned by the CreateTable function

Return values

0 No rows from the specified table have been drawn

Non-zero The row number of the last drawn row. The top row is row number 1.

GetTableRowCount
Page layout

Version history

This function was introduced in Quick PDF Library version 7.16.

Description

Returns the number of rows in the specified table.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetTableRowCount(TableID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetTableRowCount(
 TableID As Long) As Long

 DLL

int DPLGetTableRowCount(int InstanceID, int TableID);

Parameters

TableID A TableID returned by the CreateTable function

GetTempPath
Miscellaneous functions

Description

Retrieves the current setting for the folder that will be used to store temporary files generated by
functions such as MergeFileList.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetTempPath: WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetTempPath As String

 DLL

wchar_t * DPLGetTempPath(int InstanceID);

GetTextAscent
Text, Fonts, Page layout

Description

Returns the size of the selected font, measured from the baseline to the top of capital letters
(without any accents).

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetTextAscent: Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetTextAscent As Double

 DLL

double DPLGetTextAscent(int InstanceID);

Return values

The ascent of the selected font

GetTextBlockAsString
Text, Extraction

Version history

This function was introduced in Quick PDF Library version 11.12.

Description

Returns all the text block entries for a single text block as a formatted string delimited by CR/LF

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetTextBlockAsString(TextBlockListID,
 Index: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetTextBlockAsString(
 TextBlockListID As Long, Index As Long) As String

 DLL

wchar_t * DPLGetTextBlockAsString(int InstanceID, int TextBlockListID,
 int Index);

Parameters

TextBlockListID A value returned by the ExtractPageTextBlocks function

Index The index of the text block. The first text block in the list has an index of 1.

Return values

TextBlockAsString A formatted string of all available text block fields where each line is
separate by a CR/LF. Here is a sample output string

CNT:4
FNT:Arial
SIZ:12
CLR:#000000
TX1:20
TY1:769.516
TX2:48.02
TY2:769.516
TX3:48.02
TY3:780.616
TX4:20
TY4:780.616
WID:8.004,6.672,6.672,6.672
TXT:Page

where CNT = char count, FNT = fontname, SIZ = Fontsize, CLR = color,
TXx = X value for bounds point x, TYy = Y value for bounds y, WID =
comma separated character widths, TXT = extracted text.

GetTextBlockBound
Text, Fonts, Extraction

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Returns one of the bounds of the specified text block.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetTextBlockBound(TextBlockListID, Index,
 BoundIndex: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetTextBlockBound(
 TextBlockListID As Long, Index As Long,
 BoundIndex As Long) As Double

 DLL

double DPLGetTextBlockBound(int InstanceID, int TextBlockListID,
 int Index, int BoundIndex);

Parameters

TextBlockListID A value returned by the ExtractPageTextBlocks function

Index The index of the text block. The first text block in the list has an index of 1.

BoundIndex 1 = Bottom left horizontal coordinate
2 = Bottom left vertical coordinate
3 = Bottom right horizontal coordinate
4 = Bottom right vertical coordinate
5 = Top right horizontal coordinate
6 = Top right vertical coordinate
7 = Top left horizontal coordinate
8 = Top left vertical coordinate

GetTextBlockCharWidth
Text, Fonts, Extraction

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Returns the width of a particular character within the specified text block.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetTextBlockCharWidth(TextBlockListID,
 Index, CharIndex: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetTextBlockCharWidth(
 TextBlockListID As Long, Index As Long,
 CharIndex As Long) As Double

 DLL

double DPLGetTextBlockCharWidth(int InstanceID, int TextBlockListID,
 int Index, int CharIndex);

Parameters

TextBlockListID A value returned by the ExtractPageTextBlocks function

Index The index of the text block. The first text block in the list has an index of 1.

CharIndex The index of the character to retrieve the width of. The first character has
an index of 1.

GetTextBlockColor
Text, Extraction, Color

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Returns one component of the color of the text in the specified text block.
The color component value is returned as a value between 0 and 1.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetTextBlockColor(TextBlockListID, Index,
 ColorComponent: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetTextBlockColor(
 TextBlockListID As Long, Index As Long,
 ColorComponent As Long) As Double

 DLL

double DPLGetTextBlockColor(int InstanceID, int TextBlockListID,
 int Index, int ColorComponent);

Parameters

TextBlockListID A value returned by the ExtractPageTextBlocks function

Index The index of the text block. The first text block in the list has an index of 1.

ColorComponent For RGB:
1 = Red
2 = Green
3 = Blue
For CMYK:
1 = Cyan
2 = Magenta
3 = Yellow
4 = Black

GetTextBlockColorType
Text, Extraction, Color

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Returns the type of color of the text in the specified text block.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetTextBlockColorType(TextBlockListID,
 Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetTextBlockColorType(
 TextBlockListID As Long, Index As Long) As Long

 DLL

int DPLGetTextBlockColorType(int InstanceID, int TextBlockListID,
 int Index);

Parameters

TextBlockListID A value returned by the ExtractPageTextBlocks function

Index The index of the text block. The first text block in the list has an index of 1.

Return values

3 RGB

4 CMYK

GetTextBlockCount
Text, Extraction

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Returns the number of text blocks in the specified text block list.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetTextBlockCount(
 TextBlockListID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetTextBlockCount(
 TextBlockListID As Long) As Long

 DLL

int DPLGetTextBlockCount(int InstanceID, int TextBlockListID);

Parameters

TextBlockListID A value returned by the ExtractPageTextBlocks function

GetTextBlockFontName
Text, Fonts, Extraction

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Returns the font name of the text in the specified text block.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetTextBlockFontName(TextBlockListID,
 Index: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetTextBlockFontName(
 TextBlockListID As Long, Index As Long) As String

 DLL

wchar_t * DPLGetTextBlockFontName(int InstanceID, int TextBlockListID,
 int Index);

Parameters

TextBlockListID A value returned by the ExtractPageTextBlocks function

Index The index of the text block. The first text block in the list has an index of 1.

GetTextBlockFontSize
Text, Fonts, Extraction

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Returns the font size of the text in the specified text block.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetTextBlockFontSize(TextBlockListID,
 Index: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetTextBlockFontSize(
 TextBlockListID As Long, Index As Long) As Double

 DLL

double DPLGetTextBlockFontSize(int InstanceID, int TextBlockListID,
 int Index);

Parameters

TextBlockListID A value returned by the ExtractPageTextBlocks function

Index The index of the text block. The first text block in the list has an index of 1.

GetTextBlockText
Text, Extraction

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Returns the text in the specified text block.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetTextBlockText(TextBlockListID,
 Index: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetTextBlockText(
 TextBlockListID As Long, Index As Long) As String

 DLL

wchar_t * DPLGetTextBlockText(int InstanceID, int TextBlockListID,
 int Index);

Parameters

TextBlockListID A value returned by the ExtractPageTextBlocks function

Index The index of the text block. The first text block in the list has an index of 1.

GetTextBound
Text, Fonts, Page layout

Description

Returns the bounding box of the font. This is the largest rectangle which can enclose every
character of the font. The top and bottom are measured from the baseline of the font.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetTextBound(Edge: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetTextBound(
 Edge As Long) As Double

 DLL

double DPLGetTextBound(int InstanceID, int Edge);

Parameters

Edge The edge measurement to retrieve:
1 = Left
2 = Top
3 = Right
4 = Bottom

Return values

0 The edge specified was not valid

Non-zero The specified edge measurement

GetTextDescent
Text, Fonts, Page layout

Description

Returns the size of the selected font, measured from the baseline to the bottom of the tails of
lowercase letters such as g and y.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetTextDescent: Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetTextDescent As Double

 DLL

double DPLGetTextDescent(int InstanceID);

Return values

The descent of the selected font

GetTextHeight
Text, Fonts, Page layout

Description

Returns the height of the selected font. This is the sum of GetTextBound(2) and -GetTextBound
(4).

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetTextHeight: Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetTextHeight As Double

 DLL

double DPLGetTextHeight(int InstanceID);

Return values

The height of the selected font

GetTextSize
Text, Fonts, Page layout

Description

Retrieves the current text size.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetTextSize: Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetTextSize As Double

 DLL

double DPLGetTextSize(int InstanceID);

GetTextWidth
Text, Fonts, Page layout

Description

Calculate the width of the specified text, based on the selected font and font size.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetTextWidth(Text: WideString): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetTextWidth(
 Text As String) As Double

 DLL

double DPLGetTextWidth(int InstanceID, wchar_t * Text);

Parameters

Text The text to determine the width for

Return values

The width of the specified text

GetUnicodeCharactersFromEncoding
Text, Fonts, Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Returns a string containing all the Unicode characters from the specified encoding.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetUnicodeCharactersFromEncoding(
 Encoding: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetUnicodeCharactersFromEncoding(
 Encoding As Long) As String

 DLL

wchar_t * DPLGetUnicodeCharactersFromEncoding(int InstanceID,
 int Encoding);

Parameters

Encoding 2 = WinAnsiEncoding

GetViewPortBBox
Page properties, Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.14.

Description

Returns details of the BBox entry of a viewport dictionary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetViewPortBBox(ViewPortID,
 Dimension: Integer): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetViewPortBBox(
 ViewPortID As Long, Dimension As Long) As Double

 DLL

double DPLGetViewPortBBox(int InstanceID, int ViewPortID, int Dimension);

Parameters

ViewPortID A value returned by the GetPageViewPortID function

Dimension 0 = Left
1 = Top
2 = Width
3 = Height
4 = Right
5 = Bottom

GetViewPortMeasureDict
Page properties, Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.13.

Description

Returns the measurement dictionary of the specified viewport as a MeasureDictID value.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetViewPortMeasureDict(
 ViewPortID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetViewPortMeasureDict(
 ViewPortID As Long) As Long

 DLL

int DPLGetViewPortMeasureDict(int InstanceID, int ViewPortID);

Parameters

ViewPortID A value returned by the GetPageViewPortID function

Return values

0 The specified ViewPortID was invalid or the viewport does not have a
measurement dictionary

Non-zero A MeasureDictID value

GetViewPortName
Page properties, Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.13.

Description

Returns the name of the specified viewport.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetViewPortName(
 ViewPortID: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetViewPortName(
 ViewPortID As Long) As String

 DLL

wchar_t * DPLGetViewPortName(int InstanceID, int ViewPortID);

Parameters

ViewPortID A value returned by the GetPageViewPortID function

GetViewPortPtDataDict
Page properties, Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.13.

Description

Returns the PtData dictionary of the specified viewport.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetViewPortPtDataDict(
 ViewPortID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetViewPortPtDataDict(
 ViewPortID As Long) As Long

 DLL

int DPLGetViewPortPtDataDict(int InstanceID, int ViewPortID);

Parameters

ViewPortID A value returned by the GetPageViewPortID function

Return values

0 The ViewPortID parameter was incorrect or the viewport does not have a PtData

Non-zero A PtDataID value

GetViewerPreferences
Document properties

Description

Returns the viewer preferences for the document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetViewerPreferences(
 Option: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetViewerPreferences(
 Option As Long) As Long

 DLL

int DPLGetViewerPreferences(int InstanceID, int Option);

Parameters

Option 1 = Hide toolbar
2 = Hide menubar
3 = Hide window user interface
4 = Resize window to first page size
5 = Center window
6 = Display document title
7 = Page mode after full screen
8 = Predominant text reading order
9 = Display boundary for viewing
10 = Clipping boundary for viewing
11 = Display boundary for printing
12 = Clipping boundary for printing
13 = Default print dialog: scaling
14 = Default print dialog: duplex
15 = Default print dialog: auto paper tray
16 = Default print dialog: number of copies

Return values

See the SetViewerPreferences function to determine possible return values for
each Option value.

GetWrappedText
Text, Page layout

Description

Get the positions where text will wrap, based on the current font and text size. The
SetBreakString function can be used to set the delimiter for the linebreak. The default is a CR/LF
pair. On some systems a LineFeed may be default.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetWrappedText(Width: Double; Delimiter,
 Text: WideString): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetWrappedText(Width As Double,
 Delimiter As String, Text As String) As String

 DLL

wchar_t * DPLGetWrappedText(int InstanceID, double Width,
 wchar_t * Delimiter, wchar_t * Text);

Parameters

Width The width of the block to wrap the text to

Delimiter The string to place between each line

Text The text to wrap

Return values

Returns the lines of the text block, separated by the Delimiter string

GetWrappedTextBreakString
Text

Description

Similar to the GetWrappedText function, but preserves the break strings originally in the text.
This is useful for splitting text into different areas on the page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetWrappedTextBreakString(Width: Double;
 Delimiter, Text: WideString): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetWrappedTextBreakString(
 Width As Double, Delimiter As String, Text As String) As String

 DLL

wchar_t * DPLGetWrappedTextBreakString(int InstanceID, double Width,
 wchar_t * Delimiter, wchar_t * Text);

Parameters

Width The width that the text should be wrapped to

Delimiter The delimiter to use between wrapped lines

Text The text to wrap

GetWrappedTextHeight
Text, Page layout

Description

Get the height of a block of text wrapped to a certain width, based on the current font and text
size. The SetBreakString function can be used to set the delimiter for the linebreak. The default is
a CR/LF pair. On some systems a LineFeed may be default.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetWrappedTextHeight(Width: Double;
 Text: WideString): Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetWrappedTextHeight(
 Width As Double, Text As String) As Double

 DLL

double DPLGetWrappedTextHeight(int InstanceID, double Width,
 wchar_t * Text);

Parameters

Width The width of the block to wrap the text to

Text The text to wrap

Return values

Returns the height of the text block

GetWrappedTextLineCount
Text, Page layout

Description

Determine the number of lines a block of text wrapped to a certain width will take up, based on the
current font and text size. The SetBreakString function can be used to set the delimiter for the
linebreak. The default is CR / LF pair. On some systems a LineFeed may be default.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetWrappedTextLineCount(Width: Double;
 Text: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetWrappedTextLineCount(
 Width As Double, Text As String) As Long

 DLL

int DPLGetWrappedTextLineCount(int InstanceID, double Width,
 wchar_t * Text);

Parameters

Width The width of the block to wrap the text to

Text The text to wrap

Return values

The number of lines

GetXFAFormFieldCount
Form fields

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Returns the number of XFA form fields in the selected document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetXFAFormFieldCount: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetXFAFormFieldCount As Long

 DLL

int DPLGetXFAFormFieldCount(int InstanceID);

GetXFAFormFieldName
Form fields

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Returns the name of the specified form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetXFAFormFieldName(
 Index: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetXFAFormFieldName(
 Index As Long) As String

 DLL

wchar_t * DPLGetXFAFormFieldName(int InstanceID, int Index);

Parameters

Index The index of the XFA form field. The first XFA form field has an index of 1 and the
last XFA form field has a value as returned by the GetXFAFormFieldCount
function.

GetXFAFormFieldNames
Form fields

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Returns a list of the names of the XFA form fields separated by the specified delimiter.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetXFAFormFieldNames(
 Delimiter: WideString): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetXFAFormFieldNames(
 Delimiter As String) As String

 DLL

wchar_t * DPLGetXFAFormFieldNames(int InstanceID, wchar_t * Delimiter);

Parameters

Delimiter The delimiter to use to separate the XFA form field names.

GetXFAFormFieldValue
Form fields

Description

Returns the value of the specified XFA form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetXFAFormFieldValue(
 XFAFieldName: WideString): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GetXFAFormFieldValue(
 XFAFieldName As String) As String

 DLL

wchar_t * DPLGetXFAFormFieldValue(int InstanceID, wchar_t * XFAFieldName);

Parameters

XFAFieldName The name of the XFA field to work with.

GetXFAToString
Form fields

Version history

This function was introduced in Quick PDF Library version 8.16.

Description

Returns the complete XFA form contents as an XML string.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GetXFAToString(
 Options: Integer): AnsiString;

 DLL

char * DPLGetXFAToString(int InstanceID, int Options);

Parameters

Options Reserved for future use. Should be set to zero.

GlobalJavaScriptCount
Document properties, JavaScript

Description

Returns the number of global JavaScript packages in the selected document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GlobalJavaScriptCount: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GlobalJavaScriptCount As Long

 DLL

int DPLGlobalJavaScriptCount(int InstanceID);

GlobalJavaScriptPackageName
Document properties, JavaScript

Description

Returns the name of the JavaScript package with the specified index. This package name can be
used with the GetGlobalJavaScript function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.GlobalJavaScriptPackageName(
 Index: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::GlobalJavaScriptPackageName(
 Index As Long) As String

 DLL

wchar_t * DPLGlobalJavaScriptPackageName(int InstanceID, int Index);

Parameters

Index The index of the global JavaScript package. The first package has an index of 1. The
last package has an index equal to the value returned by the
GlobalJavaScriptCount function.

HasFontResources
Fonts, Document properties

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Determines if the selected document has font resources. If the document does not have font
resources it can be assumed to be an image only PDF.

Syntax

 Delphi

function TDebenuPDFLibrary1113.HasFontResources: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::HasFontResources As Long

 DLL

int DPLHasFontResources(int InstanceID);

Return values

0 The selected document does not have font resources

Non-zero The selected document has font resources

HasPageBox
Page properties

Description

Indicates whether the selected page has the specified boundary rectangle.

Syntax

 Delphi

function TDebenuPDFLibrary1113.HasPageBox(BoxType: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::HasPageBox(
 BoxType As Long) As Long

 DLL

int DPLHasPageBox(int InstanceID, int BoxType);

Parameters

BoxType 1 = MediaBox
2 = CropBox
3 = BleedBox
4 = TrimBox
5 = ArtBox

Return values

0 The page does not have the specified boundary rectangle

1 The page has the specified boundary rectangle

2 The page does not have the specified boundary rectangle, but there is a value in a
parent page tree node that is being inherited by the page

HidePage
Page properties, Page manipulation

Description

Hides the selected page. This is similar to deleting the page, but the page contents are not
removed from the PDF document. This is sometimes useful when used in conjunction with the
ClonePages function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.HidePage: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::HidePage As Long

 DLL

int DPLHidePage(int InstanceID);

ImageCount
Image handling, Document properties

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Returns the total number of images added to the PDF file. This function does not take into account
the images that may have already been in an existing PDF document which was loaded with the
LoadFromFile function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ImageCount: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ImageCount As Long

 DLL

int DPLImageCount(int InstanceID);

ImageFillColor
Image handling, Color, Page layout

Description

Returns the color of the center pixel in the selected image. This could be used to identify a
placeholder image for later replacement.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ImageFillColor: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ImageFillColor As Long

 DLL

int DPLImageFillColor(int InstanceID);

ImageHeight
Image handling

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

The height of the selected image.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ImageHeight: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ImageHeight As Long

 DLL

int DPLImageHeight(int InstanceID);

Return values

0 No image has been selected

Non-zero The height in pixels of the selected image

ImageHorizontalResolution
Image handling

Description

Returns the horizontal resolution of the selected image, if it is available. Presently only the
resolution of JFIF/JPEG, Exif/JPEG, TIFF and BMP images can be retrieved. Use the
ImageResolutionUnits function to determine if this measurement is in dots-per-inch (DPI) or
dots-per-centimetre (DPCM).

Syntax

 Delphi

function TDebenuPDFLibrary1113.ImageHorizontalResolution: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ImageHorizontalResolution As Long

 DLL

int DPLImageHorizontalResolution(int InstanceID);

ImageResolutionUnits
Image handling

Description

Use this function to determine the units of the ImageHorizontalResolution and
ImageVerticalResolution results.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ImageResolutionUnits: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ImageResolutionUnits As Long

 DLL

int DPLImageResolutionUnits(int InstanceID);

Return values

0 Unknown

1 No units, values specify the aspect ratio

2 Dots per inch (DPI)

3 Dots per centimetre (DPCM)

ImageType
Image handling

Description

The type of the selected image.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ImageType: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ImageType As Long

 DLL

int DPLImageType(int InstanceID);

Return values

0 No image is selected

1 The selected image is a JPEG image

2 The selected image is a BMP image

3 The selected image is a TIFF image

ImageVerticalResolution
Image handling

Description

Returns the vertical resolution of the selected image, if it is available. Presently only the resolution
of JFIF/JPEG, Exif/JPEG, TIFF and BMP images can be retrieved. Use the ImageResolutionUnits
function to determine if this measurement is in dots-per-inch (DPI) or dots-per-centimetre (DPCM).

Syntax

 Delphi

function TDebenuPDFLibrary1113.ImageVerticalResolution: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ImageVerticalResolution As Long

 DLL

int DPLImageVerticalResolution(int InstanceID);

ImageWidth
Image handling

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

The width of the selected image.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ImageWidth: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ImageWidth As Long

 DLL

int DPLImageWidth(int InstanceID);

Return values

0 No image has been selected

Non-zero The width in pixels of the selected image

ImportEMFFromFile
Vector graphics, Image handling

Version history

This function was introduced in Quick PDF Library version 7.15.

Description

Adds a WMF or EMF image from a file to the selected document.
Once an image has been added to the document it can be drawn on any page multiple times
without further increasing the size of the PDF file.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ImportEMFFromFile(FileName: WideString;
 FontOptions, GeneralOptions: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ImportEMFFromFile(
 FileName As String, FontOptions As Long,
 GeneralOptions As Long) As Long

 DLL

int DPLImportEMFFromFile(int InstanceID, wchar_t * FileName,
 int FontOptions, int GeneralOptions);

Parameters

FileName The file name of the image to add.

FontOptions If GeneralOptions is 1 this parameter is ignored, otherwise the following
values take effect:
0 = Use the first font added to the PDF
1 = Automatically add fonts as non-embedded TrueType fonts

GeneralOptions 0 = Import as a vector image
1 = Import as a bitmap image

Return values

0 The image could not be added

Non-zero The image was added successfully. The ImageID is returned which can be
passed to functions like SelectImage and DrawImage.

ImportEMFFromStream
Vector graphics, Image handling

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

Adds a WMF or EMF image from a TStream to the selected document.
Once an image has been added to the document it can be drawn on any page multiple times
without further increasing the size of the PDF file.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ImportEMFFromStream(InStream: TStream;
 FontOptions, GeneralOptions: Integer): Integer;

Parameters

InStream The TStream object containing the EMF/WMF data

FontOptions If GeneralOptions is 1 this parameter is ignored, otherwise the following
values take effect:
0 = Use the first font added to the PDF
1 = Automatically add fonts as non-embedded TrueType fonts

GeneralOptions 0 = Import as a vector image
1 = Import as a bitmap image

InsertPages
Document management, Page manipulation

Description

Inserts one or more blank pages into the document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.InsertPages(StartPage,
 PageCount: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::InsertPages(StartPage As Long,
 PageCount As Long) As Long

 DLL

int DPLInsertPages(int InstanceID, int StartPage, int PageCount);

Parameters

StartPage The page number of the first page to insert

PageCount The total number of pages to insert

Return values

0 Failed

Non-zero The new total number of pages in the document

InsertTableColumns
Page layout

Version history

This function was introduced in Quick PDF Library version 7.16.

Description

Adds columns to the specified table at any position

Syntax

 Delphi

function TDebenuPDFLibrary1113.InsertTableColumns(TableID, Position,
 NewColumnCount: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::InsertTableColumns(
 TableID As Long, Position As Long,
 NewColumnCount As Long) As Long

 DLL

int DPLInsertTableColumns(int InstanceID, int TableID, int Position,
 int NewColumnCount);

Parameters

TableID A TableID returned by the CreateTable function

Position The position to insert the new colulmns. Minimum value is 1. Maximum
value is one greater than the value returned by the
GetTableColumnCount function.

NewColumnCount The number of columns to add to the table

Return values

0 Columns could not be added. Check the TableID parameter and make
sure NewColumnCount is greater than or equal to 1. The Position
parameter must also be within range.

Non-zero The total number of columns in the table after adding the new columns.

InsertTableRows
Page layout

Version history

This function was introduced in Quick PDF Library version 7.16.

Description

Adds rows to the specified table at any position

Syntax

 Delphi

function TDebenuPDFLibrary1113.InsertTableRows(TableID, Position,
 NewRowCount: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::InsertTableRows(TableID As Long,
 Position As Long, NewRowCount As Long) As Long

 DLL

int DPLInsertTableRows(int InstanceID, int TableID, int Position,
 int NewRowCount);

Parameters

TableID A TableID returned by the CreateTable function

Position The position to insert the new rows. Minimum value is 1. Maximum value is
one greater than the value returned by the GetTableRowCount function.

NewRowCount The number of rows to add to the table

Return values

0 Rows could not be added. Check the TableID parameter and make sure
NewRowCount is greater than or equal to 1. The Position parameter must
also be within range.

Non-zero The total number of rows in the table after adding the new rows.

IsAnnotFormField
Form fields, Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 7.18.

Description

For an annotation to be a form field it must be attached to the document form.
This function checks if the specified annotation is allowed to be attached to the document form and
whether it is currently attached.
For an annotation to be attached to the document form it must be a Widget annotation and it
cannot be a child of another annotation.

Syntax

 Delphi

function TDebenuPDFLibrary1113.IsAnnotFormField(Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::IsAnnotFormField(
 Index As Long) As Long

 DLL

int DPLIsAnnotFormField(int InstanceID, int Index);

Parameters

Index The index of the annotation. The first annotation on the page has an index of 1.

Return values

0 The specified annotation is not a Widget annotation or it is the child of another
annotation.

1 The specified annotation is a form field and is currently attached to the document
form.

2 The specified annotation is in the correct format to be a form field but it is not
currently attached to the document form. Use the AttachAnnotToForm function to
attach it.

IsLinearized
Document properties

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

This function was called Linearized in v10 and earlier. Reports whether the selected document was
loaded from a linearized file. This is for informational purposes only. If the file is resaved it will no
longer be linearized.

Syntax

 Delphi

function TDebenuPDFLibrary1113.IsLinearized: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::IsLinearized As Long

 DLL

int DPLIsLinearized(int InstanceID);

Return values

0 The original file was not linearized

1 The original file was linearized

IsTaggedPDF
Version history

This function was introduced in Quick PDF Library version 9.14.

Description

Determines if the selected document has the MarkInfo/Marked property set.

Syntax

 Delphi

function TDebenuPDFLibrary1113.IsTaggedPDF: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::IsTaggedPDF As Long

 DLL

int DPLIsTaggedPDF(int InstanceID);

Return values

0 The document is not tagged

1 The document is tagged

LastErrorCode
Miscellaneous functions

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Use this function to determine the reason certain functions failed.

Syntax

 Delphi

function TDebenuPDFLibrary1113.LastErrorCode: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::LastErrorCode As Long

 DLL

int DPLLastErrorCode(int InstanceID);

Return values

101 The Strength parameter passed to the Encrypt function was invalid

102 The Permissions parameter passed to the Encrypt function was invalid. Use the
EncodePermissions function to construct a value for this parameter

103 The Encrypt function was used on a document that was already encrypted

104 The Encrypt function failed for an unknown reason

201 The SetInformation function failed because the document is encrypted

202 The Key parameter passed to the SetInformation function was out of range

301 An invalid combination of barcode and option was sent to the DrawBarcode
function

302 Non-numeric characters were sent to DrawBarcode using EAN-13

303 The EAN-13 barcode has an invalid checksum character

401 Could not open input file

402 Output file already exists and could not be deleted

403 Could not open output file

404 Invalid password

405 Document is not encrypted

406 Document is already encrypted

407 Invalid encryption strength

408 Invalid permissions

409 Invalid file structure, file is damaged

410 One of the input files is encrypted

411 File not found

412 Invalid page range list

501 The specified FileHandle was invalid

999 The function could not be used because the library is not unlocked

LastRenderError
Miscellaneous functions, Rendering and printing

Version history

This function was introduced in Quick PDF Library version 7.13.

Description

Returns the exception information in cases where the renderer encountered an error.

Syntax

 Delphi

function TDebenuPDFLibrary1113.LastRenderError: WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::LastRenderError As String

 DLL

wchar_t * DPLLastRenderError(int InstanceID);

LibraryVersion
Miscellaneous functions

Description

Returns the version of the library, for example "7.12".

Syntax

 Delphi

function TDebenuPDFLibrary1113.LibraryVersion: WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::LibraryVersion As String

 DLL

wchar_t * DPLLibraryVersion(int InstanceID);

LicenseInfo
Miscellaneous functions

Description

Returns information about the unlock license used.

Syntax

 Delphi

function TDebenuPDFLibrary1113.LicenseInfo: WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::LicenseInfo As String

 DLL

wchar_t * DPLLicenseInfo(int InstanceID);

LinearizeFile
Document manipulation, Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 11.11.

Description

Linearizes the specified PDF file for fast web view.

Syntax

 Delphi

function TDebenuPDFLibrary1113.LinearizeFile(InputFileName, Password,
 OutputFileName: WideString; Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::LinearizeFile(
 InputFileName As String, Password As String,
 OutputFileName As String, Options As Long) As Long

 DLL

int DPLLinearizeFile(int InstanceID, wchar_t * InputFileName,
 wchar_t * Password, wchar_t * OutputFileName, int Options);

Parameters

InputFileName The path and file name of the input PDF to transform.

Password The optional password to open the input PDF if it is encrypted

OutputFileName The path and file name of the signed PDF that should be created. This
should be different to InputFileName.

Options Reserved for future use, should be set to zero.

Return values

1 Success

2 Input PDF not found

3 Input PDF cannot be read

4 Input PDF password incorrect

5 Could not write output file

LoadFromCanvasDC
Vector graphics, Document management

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Creates a new document from the drawing operations applied to the DC returned by the
GetCanvasDC function.
When the Options parameter is set to 3, use the NoEmbedFontListAdd function to add fonts to
the no embed font list.

Syntax

 Delphi

function TDebenuPDFLibrary1113.LoadFromCanvasDC(DPI: Double;
 Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::LoadFromCanvasDC(DPI As Double,
 Options As Long) As Long

 DLL

int DPLLoadFromCanvasDC(int InstanceID, double DPI, int Options);

Parameters

DPI The DPI to use for the new document. For example, if the canvas was created with a
width and height of 96 and the DPI is specified as 192, the resulting document will
be 0.5 inches in width and height.

Options -1 = Convert the drawing commands to a single image using GDI+
0 = Process the drawing commands as vector graphics, fonts are not embedded
1 = Process the drawing commands as vector graphics, fonts are embedded but not
compressed
2 = Process the drawing commands as vector graphics, fonts are embedded and
compressed
3 = Process the drawing commands as vector graphics, fonts not in the no embed
font list are embedded and compressed

Return values

0 A canvas has not been created

1 The canvas DC was processed correctly and a new document has been created

LoadFromFile
Document management

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Loads a PDF document from a file on disk. If the function succeeds, the loaded document will be
selected and its DocumentID can be retrieved using the SelectedDocument function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.LoadFromFile(FileName,
 Password: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::LoadFromFile(FileName As String,
 Password As String) As Long

 DLL

int DPLLoadFromFile(int InstanceID, wchar_t * FileName,
 wchar_t * Password);

Parameters

FileName The path and file name of the file to load.

Password The password to open the file

Return values

0 The file could not be read or processed. Use the LastErrorCode function to
determine the cause of the failure.

1 The file was loaded successfully

LoadFromStream
Document management

Description

This function, only available in the Delphi versions of the library, allows a PDF document to be
loaded from a TStream object. If the function succeeds, the loaded document will be selected and
its DocumentID can be retrieved using the SelectedDocument function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.LoadFromStream(InStream: TStream;
 Password: WideString): Integer;

Parameters

InStream The TStream object containing the PDF document data

Password The password to load the file

Return values

0 A PDF document could not be read from the stream. Use the LastErrorCode
function to determine the reason this function failed.

1 A PDF document was successfully read from the stream. Use the
SelectedDocument function to obtain the Document ID which can be used later
to select this specific document.

LoadFromString
Document management

Description

Similar to the LoadFromFile function, except the data for the PDF document is passed in as a
string. If the function succeeds, the loaded document will be selected and its DocumentID can be
retrieved using the SelectedDocument function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.LoadFromString(const Source: AnsiString;
 Password: WideString): Integer;

 DLL

int DPLLoadFromString(int InstanceID, char * Source, wchar_t * Password);

Parameters

Source The source data to load the PDF document from

Password The password to load the file

Return values

0 The PDF could not be loaded

1 The PDF was loaded from the string successfully

LoadFromVariant
Document management

Description

Loads a PDF document from a byte array stored as a Variant type. This function is only available in
the ActiveX editions of the library. If the function succeeds, the loaded document will be selected
and its DocumentID can be retrieved using the SelectedDocument function.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::LoadFromVariant(
 Source As Variant, Password As String) As Long

Parameters

Source The byte array to load the PDF document from

Password The password to load the file

Return values

0 The document could not be loaded. Check the result of the LastErrorCode
function for more information.

1 The document was loaded successfully

LoadState
Vector graphics, Page layout

Description

Loads the graphics state previously stored with SaveState.

Syntax

 Delphi

function TDebenuPDFLibrary1113.LoadState: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::LoadState As Long

 DLL

int DPLLoadState(int InstanceID);

MergeDocument
Document manipulation

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Use this function to join another document to the selected document. After merging, the second
document is deleted.
Form fields and annotations from the second document are preserved but outlines (bookmarks) are
not.

Syntax

 Delphi

function TDebenuPDFLibrary1113.MergeDocument(DocumentID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::MergeDocument(
 DocumentID As Long) As Long

 DLL

int DPLMergeDocument(int InstanceID, int DocumentID);

Parameters

DocumentID The ID of the document to join to the selected document

Return values

0 The documents could not be merged together

1 The merging was successful

MergeFileList
Document manipulation

Description

Merges all the files in a named file list and saves the resulting merged document to the specified
file. Use the ClearFileList, FileListCount and AddToFileList functions to construct the named file
list. There must be two or more files in the file list in order for the merging to succeed.
Outlines (bookmarks), form fields and annotations from all the documents will be present in the
merged document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.MergeFileList(ListName,
 OutputFileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::MergeFileList(
 ListName As String, OutputFileName As String) As Long

 DLL

int DPLMergeFileList(int InstanceID, wchar_t * ListName,
 wchar_t * OutputFileName);

Parameters

ListName The name of the list of files to merge together

OutputFileName The path and file name of the file to create which will contain the merged
files.

Return values

The number of documents which were successfully merged together. If this
is less than the intended number use the FileListItem function to find the
file which caused the merge process to end prematurely.

MergeFileListFast
Document manipulation

Description

Similar to the MergeFileList function, but uses an advanced algorithm to improve speed.
A new file list will be created during merging that will contain the result of the merge process for
each of the items in the specified file list. The new file list will have the same name as the original
file list with the word Result appended. For example, if the original file list was called "MyFiles",
then the new file list will be called "MyFilesResult". This new file list will not contain file names, but
will contain a text description of the status of the matching file during the merge process.
There must be two or more files in the file list in order for the merging to succeed.
Form fields and annotations from all the documents will be present in the merged document but
only outlines (bookmarks) from the first document will be in the merged document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.MergeFileListFast(ListName,
 OutputFileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::MergeFileListFast(
 ListName As String, OutputFileName As String) As Long

 DLL

int DPLMergeFileListFast(int InstanceID, wchar_t * ListName,
 wchar_t * OutputFileName);

Parameters

ListName The name of the file list to use. All the files in this list will be merged
together.

OutputFileName The path and file name of the output file to create. This file will contain all
the files from the file list.

Return values

0 The merge process could not be completed. Use the GetLastError function
to determine the cause of the error.

Non-zero The number of files that were successfully merged

MergeFiles
Document manipulation

Description

Merges two files on disk and saves the merged document to a new file. The files are accessed
directly on disk, the entire file does not have to be loaded into memory so this function can be
used with huge documents. The files must not be encrypted. Monitor the size of the output file
while this function runs to work out the progress.
Outlines (bookmarks), form fields and annotations from the both documents will be present in the
merged document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.MergeFiles(FirstFileName, SecondFileName,
 OutputFileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::MergeFiles(
 FirstFileName As String, SecondFileName As String,
 OutputFileName As String) As Long

 DLL

int DPLMergeFiles(int InstanceID, wchar_t * FirstFileName,
 wchar_t * SecondFileName, wchar_t * OutputFileName);

Parameters

FirstFileName The name of the first file to merge.

SecondFileName The name of the second file to merge.

OutputFileName The name of the file to create which will contain the merged document.

Return values

0 The files could not be merged. Use the LastErrorCode function to
determine the cause of the failure.

1 The files were merged successfully and the new merged document was
created

MergeStreams
Document manipulation

Description

This function is similar to the MergeFiles function, however instead of working with files on disk, it
merges two PDF documents stored in different TStream objects and saves the merged document
into a third stream.
Outlines (bookmarks), form fields and annotations from the both documents will be present in the
merged document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.MergeStreams(FirstStream, SecondStream,
 OutputStream: TStream): Integer;

Parameters

FirstStream The stream containing the first document

SecondStream The stream containing the second document

OutputStream The merged document is written into this stream

Return values

0 The documents could not be merged. Use the LastErrorCode function to
determine the cause of the failure.

1 The merge process was successful

MergeTableCells
Page layout

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Merges multiple cells from the specified table into one cell.

Syntax

 Delphi

function TDebenuPDFLibrary1113.MergeTableCells(TableID, FirstRow,
 FirstColumn, LastRow, LastColumn: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::MergeTableCells(TableID As Long,
 FirstRow As Long, FirstColumn As Long, LastRow As Long,
 LastColumn As Long) As Long

 DLL

int DPLMergeTableCells(int InstanceID, int TableID, int FirstRow,
 int FirstColumn, int LastRow, int LastColumn);

Parameters

TableID A TableID returned by the CreateTable function

FirstRow The the number of the first row to set. Top row is row number 1.

FirstColumn The the number of the first column to set. Left most column is column number
1.

LastRow The number of the final row to set

LastColumn The number of the final column to set

MoveContentStream
Content Streams and Optional Content Groups

Version history

This function was renamed in Quick PDF Library version 8.11.
The function name in earlier versions was MoveLayer.

Description

A page in a PDF document has one or more content stream parts that together contain all the PDF
page description commands for the page.
This function can be used to change the order in which the content stream parts are drawn onto
the page to bring certain information to the front or push it to the back.
Content stream parts that you want placed at the back should be drawn first (index of 1).

Syntax

 Delphi

function TDebenuPDFLibrary1113.MoveContentStream(FromPosition,
 ToPosition: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::MoveContentStream(
 FromPosition As Long, ToPosition As Long) As Long

 DLL

int DPLMoveContentStream(int InstanceID, int FromPosition, int ToPosition);

Parameters

FromPosition The current content stream part index. The first content stream part has an
index of 1. The last content stream part has an index equal to the value
returned by the ContentStreamCount function.

ToPosition The new content stream part index.

Return values

0 The content stream part could not be moved

1 Success

MoveOutlineAfter
Outlines

Description

Moves an outline item to appear directly after another outline item. The outline will be moved along
with all children nodes.

Syntax

 Delphi

function TDebenuPDFLibrary1113.MoveOutlineAfter(OutlineID,
 SiblingID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::MoveOutlineAfter(
 OutlineID As Long, SiblingID As Long) As Long

 DLL

int DPLMoveOutlineAfter(int InstanceID, int OutlineID, int SiblingID);

Parameters

OutlineID The ID of the outline as returned by the NewOutline function. Alternatively, use
the GetOutlineID function to get a valid outline ID.

SiblingID The outline will be moved to a position after the outline with this ID

Return values

0 The outline was not moved, the OutlineID or SiblingID parameters were invalid or
were the same value

1 The outline was moved successfully

MoveOutlineBefore
Outlines

Description

Moves an outline item to appear directly before another outline item. The outline will be moved
along with all children nodes.

Syntax

 Delphi

function TDebenuPDFLibrary1113.MoveOutlineBefore(OutlineID,
 SiblingID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::MoveOutlineBefore(
 OutlineID As Long, SiblingID As Long) As Long

 DLL

int DPLMoveOutlineBefore(int InstanceID, int OutlineID, int SiblingID);

Parameters

OutlineID The ID of the outline as returned by the NewOutline function. Alternatively, use
the GetOutlineID function to get a valid outline ID.

SiblingID The outline will be moved to a position before the outline with this ID

Return values

0 The outline was not moved, the OutlineID or SiblingID parameters were invalid or
were the same value

1 The outline was moved successfully

MovePage
Document management, Page manipulation

Description

Moves the selected page to a new position in the document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.MovePage(NewPosition: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::MovePage(
 NewPosition As Long) As Long

 DLL

int DPLMovePage(int InstanceID, int NewPosition);

Parameters

NewPosition The new position of the page

Return values

0 The page could not be moved. Check the value of the NewPosition parameter.

1 The page was moved successfully

MovePath
Vector graphics, Path definition and drawing

Description

Starts a new sub-path within the current path. This allows complex shapes to be created (for
example, with pieces cut out).

Syntax

 Delphi

function TDebenuPDFLibrary1113.MovePath(NewX, NewY: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::MovePath(NewX As Double,
 NewY As Double) As Long

 DLL

int DPLMovePath(int InstanceID, double NewX, double NewY);

Parameters

NewX The new horizontal co-ordinate of the starting point of the new sub-path

NewY The new vertical co-ordinate of the starting point of the new sub-path

MultiplyScale
Measurement and coordinate units

Description

Multiplies the drawing scale by a specified factor. For example, multiplying the scale by 0.5 will
draw graphics at half their size with the same drawing commands.

Syntax

 Delphi

function TDebenuPDFLibrary1113.MultiplyScale(MultScaleBy: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::MultiplyScale(
 MultScaleBy As Double) As Long

 DLL

int DPLMultiplyScale(int InstanceID, double MultScaleBy);

Parameters

MultScaleBy The factor to multiply the current drawing scale by

NewChildFormField
Form fields

Version history

This function was introduced in Quick PDF Library version 7.18.

Description

Adds a new form field to the selected page as a child of another field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NewChildFormField(Index: Integer;
 Title: WideString; FieldType: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::NewChildFormField(Index As Long,
 Title As String, FieldType As Long) As Long

 DLL

int DPLNewChildFormField(int InstanceID, int Index, wchar_t * Title,
 int FieldType);

Parameters

Index The index of the parent field.

Title The title of the new form field. The title cannot contain the period "." character.

FieldType The type of the field to create:
1 = Text
2 = Pushbutton
3 = Checkbox
4 = Radiobutton
5 = Choice
6 = Signature
7 = Parent

Return values

0 The new form field could not be created

Non-zero The form field was created successfully, and this is the index of the new field

NewContentStream
Content Streams and Optional Content Groups

Version history

This function was renamed in Quick PDF Library version 8.11.
The function name in earlier versions was NewLayer.

Description

A page in a PDF document has one or more content stream parts that together contain all the PDF
page description commands for the page.
This function creates a new content stream part on the selected page. If required, the new content
stream part can then be moved behind the existing information on the page using the
MoveContentStream function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NewContentStream: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::NewContentStream As Long

 DLL

int DPLNewContentStream(int InstanceID);

Return values

0 The new content stream part could not be created

Non-zero The index of the new content stream part. The first part has an index of 1.

NewCustomPrinter
Rendering and printing

Description

Creates a custom printer and returns the name of the custom printer. The returned printer name
can be used as the PrinterName parameter of the PrintDocument function. Before printing, the
properties of the printer can be set using the SetupCustomPrinter function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NewCustomPrinter(
 OriginalPrinterName: WideString): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::NewCustomPrinter(
 OriginalPrinterName As String) As String

 DLL

wchar_t * DPLNewCustomPrinter(int InstanceID,
 wchar_t * OriginalPrinterName);

Parameters

OriginalPrinterName The name of the printer to use for printing. This is the name that
appears in the Windows Print Manager. Use the GetPrinterNames
function to return a list of valid printers on the system.

NewDestination
Annotations and hotspot links, Document management

Version history

This function was introduced in Quick PDF Library version 7.22.

Description

Creates a new destination object that can be used with the AddLinkToDestination, GetDestPage,
GetDestType or GetDestValue functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NewDestination(DestPage, Zoom,
 DestType: Integer; Left, Top, Right, Bottom: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::NewDestination(DestPage As Long,
 Zoom As Long, DestType As Long, Left As Double, Top As Double,
 Right As Double, Bottom As Double) As Long

 DLL

int DPLNewDestination(int InstanceID, int DestPage, int Zoom,
 int DestType, double Left, double Top, double Right,
 double Bottom);

Parameters

DestPage The page number that this destination object links to

Zoom The zoom percentage to use for the destination object, valid values from 0 to 6400. Only
used for DestType = 1, should be set to 0 for other DestTypes.

DestType 1 = "XYZ" - the target page is positioned at the point specified by the Left and Top
parameters. The Zoom parameter specifies the zoom percentage.
2 = "Fit" - the entire page is zoomed to fit the window. None of the other parameters are
used and should be set to zero.
3 = "FitH" - the page is zoomed so that the entire width of the page is visible. The height of
the page may be greater or less than the height of the window. The page is positioned at
the vertical position specified by the Top parameter.
4 = "FitV" - the page is zoomed so that the entire height of the page can be seen. The width
of the page may be greater or less than the width of the window. The page is positioned at
the horizontal position specified by the Left parameter.
5 = "FitR" - the page is zoomed so that a certain rectangle on the page is visible. The Left,
Top, Right and Bottom parameters define the rectangular area on the page.
6 = "FitB" - the page is zoomed so that it's bounding box is visible.
7 = "FitBH" - the page is positioned vertically at the position specified by the Top
parameter. The page is zoomed so that the entire width of the page's bounding box is
visible.
8 = "FitBV" - the page is positioned at the horizontal position specified by the Left
parameter. The page is zoomed just enough to fit the entire height of the bounding box into
the window.

Left The horizontal position used by DestType = 1, 4, 5 and 8

Top The vertical position used by DestType = 1, 3, 5 and 7

Right The horizontal position of the righthand edge of the rectangle. Used by DestType = 5

Bottom The horizontal position of the bottom of the rectangle. Used by DestType = 5

Return values

0 The DestPage parameter was invalid

Non-zero A DestID value

NewDocument
Document management

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Creates a new blank document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NewDocument: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::NewDocument As Long

 DLL

int DPLNewDocument(int InstanceID);

Return values

0 There was an error while trying to create the new document. This should never
occur.

Non-zero The ID of the new document

NewFormField
Form fields

Description

Adds a new form field to the selected page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NewFormField(Title: WideString;
 FieldType: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::NewFormField(Title As String,
 FieldType As Long) As Long

 DLL

int DPLNewFormField(int InstanceID, wchar_t * Title, int FieldType);

Parameters

Title The title of the new form field. The title cannot contain the period "." character.

FieldType The type of the field to create:
1 = Text
2 = Pushbutton
3 = Checkbox
4 = Radiobutton
5 = Choice
6 = Signature
7 = Parent

Return values

0 The new form field could not be created

Non-zero The form field was created successfully, and this is the index of the new field

NewInternalPrinterObject
Rendering and printing

Version history

This function was introduced in Quick PDF Library version 9.16.

Description

Creates a new internal printer object for use by subsequent printing operations.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NewInternalPrinterObject(
 Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::NewInternalPrinterObject(
 Options As Long) As Long

 DLL

int DPLNewInternalPrinterObject(int InstanceID, int Options);

Parameters

Options Must be set to 0

Return values

0 The options parameter was not zero or the new internal printer object could not be
created

1 Success

NewNamedDestination
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 7.22.

Description

Creates a named destination.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NewNamedDestination(DestName: WideString;
 DestID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::NewNamedDestination(
 DestName As String, DestID As Long) As Long

 DLL

int DPLNewNamedDestination(int InstanceID, wchar_t * DestName, int DestID);

Parameters

DestName The name of the destination

DestID The destination to assign a name to

NewOptionalContentGroup
Content Streams and Optional Content Groups

Description

Creates a new optional content group. The group name will appear in the Layers tab in Acrobat 6
or later.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NewOptionalContentGroup(
 GroupName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::NewOptionalContentGroup(
 GroupName As String) As Long

 DLL

int DPLNewOptionalContentGroup(int InstanceID, wchar_t * GroupName);

Parameters

GroupName The name of the optional content group. This name is displayed in the PDF
viewer user interface.

Return values

0 The new optional content group could not be created

Non-zero An ID that can be used as the OptionalContentGroupID parameter with the other
optional content group functions

NewOutline
Outlines

Description

Adds a new outline item to the document. Outline items can be added in a hierarchical structure. In
Acrobat Reader, outlines are referred to as bookmarks.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NewOutline(Parent: Integer;
 Title: WideString; DestPage: Integer; DestPosition: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::NewOutline(Parent As Long,
 Title As String, DestPage As Long,
 DestPosition As Double) As Long

 DLL

int DPLNewOutline(int InstanceID, int Parent, wchar_t * Title,
 int DestPage, double DestPosition);

Parameters

Parent 0 for a root item, or the ID of the parent item if this is a child item (returned by
the NewOutline function). Alternatively, use the GetOutlineID function to get
a valid outline ID.

Title The title of the outline item.

DestPage The destination page number that this outline item links to

DestPosition The vertical position on the destination page to link to

Return values

0 The item could not be added

Non-zero The ID of the item which was added successfully

NewPage
Page manipulation

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Create a new page. The new page is added to the end of the document, and will have the same
width and height as the selected page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NewPage: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::NewPage As Long

 DLL

int DPLNewPage(int InstanceID);

Return values

0 The page could not be added. This should never occur.

Non-zero The page number of the page that was added

NewPageFromCanvasDC
Vector graphics, Page manipulation

Version history

This function was introduced in Quick PDF Library version 7.23.

Description

Adds a new page to the selected document from the drawing operations applied to the DC returned
by the GetCanvasDC function.
When the Options parameter is set to 3 or 4, use the NoEmbedFontListAdd function to add fonts
to the no embed font list.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NewPageFromCanvasDC(DPI: Double;
 Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::NewPageFromCanvasDC(
 DPI As Double, Options As Long) As Long

 DLL

int DPLNewPageFromCanvasDC(int InstanceID, double DPI, int Options);

Parameters

DPI The DPI to use for the new document. For example, if the canvas was created with a
width and height of 96 and the DPI is specified as 192, the resulting document will
be 0.5 inches in width and height.

Options -1 = Convert the drawing commands to a single image using GDI+
0 = Process the drawing commands as vector graphics, fonts are not embedded
1 = Process the drawing commands as vector graphics, fonts are embedded but not
compressed
2 = Process the drawing commands as vector graphics, fonts are embedded and
compressed
3 = Process the drawing commands as vector graphics, fonts not in the no embed
font list are embedded and compressed
4 = Same as 3 but fonts already added during previous calls to this function or the
LoadFromCanvasDC function are reused

Return values

0 A canvas has not been created

1 The canvas DC was processed correctly and a new document has been created

NewPages
Page manipulation

Description

This function is similar to the NewPage function, but allows you to add more than one new page
to the selected document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NewPages(PageCount: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::NewPages(
 PageCount As Long) As Long

 DLL

int DPLNewPages(int InstanceID, int PageCount);

Parameters

PageCount The number of pages to add to the document

Return values

0 The pages could not be added. This should never occur.

Non-zero The total number of pages in the document after the new pages were added

NewPostScriptXObject
Document properties

Description

Adds a PostScript XObject to the document. If the PostScript XObject is drawn onto the page with
the DrawPostScriptXObject function the contents of the PostScript XObject will be placed into
the generated PostScript for the page when printed to a PostScript printer.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NewPostScriptXObject(
 PS: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::NewPostScriptXObject(
 PS As String) As Long

 DLL

int DPLNewPostScriptXObject(int InstanceID, wchar_t * PS);

Parameters

PS The PostScript that will be inserted

Return values

0 The PostScript XObject could not be added

Non-zero A reference to the PostScript XObject which can be used with the
DrawPostScriptXObject function

NewRGBAxialShader
Vector graphics, Color

Version history

This function was introduced in Quick PDF Library version 7.11.

Description

This function adds an axial shader to the current document. The color is varied linearly from one color
to another between two points and is used for linear gradient fills.
The shader can be used with the SetTextShader, SetLineShader and SetFillShader functions to set
the color of subsequently drawn vector graphics and text.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NewRGBAxialShader(ShaderName: WideString;
 StartX, StartY, StartRed, StartGreen, StartBlue, EndX, EndY, EndRed,
 EndGreen, EndBlue: Double; Extend: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::NewRGBAxialShader(
 ShaderName As String, StartX As Double, StartY As Double,
 StartRed As Double, StartGreen As Double, StartBlue As Double,
 EndX As Double, EndY As Double, EndRed As Double,
 EndGreen As Double, EndBlue As Double, Extend As Long) As Long

 DLL

int DPLNewRGBAxialShader(int InstanceID, wchar_t * ShaderName,
 double StartX, double StartY, double StartRed,
 double StartGreen, double StartBlue, double EndX, double EndY,
 double EndRed, double EndGreen, double EndBlue, int Extend);

Parameters

ShaderName The name of the shader. Should be a simple string consisting of alphanumeric
characters and no whitespace. This name is used with the SetTextShader,
SetLineShader and SetFillShader functions.

StartX The horizontal co-ordinate of the start point

StartY The vertical co-ordinate of the start point

StartRed The red component of the start color

StartGreen The green component of the start color

StartBlue The blue component of the start color

EndX The horizontal co-ordinate of the end point

EndY The vertical co-ordinate of the end point

EndRed The red component of the end color

EndGreen The green component of the end color

EndBlue The blue component of the end color

Extend 0 = do not extend the beyond the start and end points
1 = extend the shader using solid color

Return values

0 The shader could not be added, possibly a shader with this name has already been
added

1 The shader was added successfully

NewSignProcessFromFile
Security and Signatures

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Creates a new digital signature process using a file as the source document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NewSignProcessFromFile(InputFile,
 Password: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::NewSignProcessFromFile(
 InputFile As String, Password As String) As Long

 DLL

int DPLNewSignProcessFromFile(int InstanceID, wchar_t * InputFile,
 wchar_t * Password);

Parameters

InputFile The path and name of the file to sign

Password The password to open the PDF, if any

NewSignProcessFromStream
Security and Signatures

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Creates a new digital signature process using a stream as the source.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NewSignProcessFromStream(
 InputStream: TStream; Password: WideString): Integer;

Parameters

InputStream The stream object containing the PDF to be signed

Password The password to open the PDF, if any

NewSignProcessFromString
Security and Signatures

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Creates a new digital signature process using a string of 8-bit bytes as the source.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NewSignProcessFromString(
 const Source: AnsiString; Password: WideString): Integer;

 DLL

int DPLNewSignProcessFromString(int InstanceID, char * Source,
 wchar_t * Password);

Parameters

Source A string containing the document to be signed

Password The password to open the PDF, if any

NewStaticOutline
Outlines

Description

This function creates a new outline without an action. The action can later be set using the
SetOutlineDestination, SetOutlineWebLink or SetOutlineJavaScript functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NewStaticOutline(Parent: Integer;
 Title: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::NewStaticOutline(Parent As Long,
 Title As String) As Long

 DLL

int DPLNewStaticOutline(int InstanceID, int Parent, wchar_t * Title);

Parameters

Parent 0 for a root item, or the ID of the parent item if this is a child item

Title The title of the outline item.

Return values

0 The outline item could not be added

Non-zero The ID of the outline item that was added

NewTilingPatternFromCapturedPage
Vector graphics, Color

Version history

This function was introduced in Quick PDF Library version 8.16.

Description

This function converts a captured page into a tiling pattern and adds the pattern to the current
document.
The pattern can be used with the SetFillTilingPattern function to set the color of subsequently
drawn vector graphics.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NewTilingPatternFromCapturedPage(
 PatternName: WideString; CaptureID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::NewTilingPatternFromCapturedPage(
 PatternName As String, CaptureID As Long) As Long

 DLL

int DPLNewTilingPatternFromCapturedPage(int InstanceID,
 wchar_t * PatternName, int CaptureID);

Parameters

PatternName The name of the tiling pattern. Should be a simple string consisting of
alphanumeric characters and no whitespace. This name is used with the
SetFillTilingPattern function.

CaptureID The ID returned by the CapturePage or CapturePageEx functions.

Return values

0 The captured page could not be converted into a tiling pattern. The CaptureID
parameter might be invalid or the PatternName has already been used.

1 Success

NoEmbedFontListAdd
Vector graphics, Fonts, Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 7.23.

Description

Adds a font name to the no embed font list used by the LoadFromCanvasDC and
NewPageFromCanvasDC functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NoEmbedFontListAdd(
 FontName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::NoEmbedFontListAdd(
 FontName As String) As Long

 DLL

int DPLNoEmbedFontListAdd(int InstanceID, wchar_t * FontName);

Parameters

FontName The font name to add to the list

Return values

0 The font name is already in the list

1 The font name was added to the list successfully

NoEmbedFontListCount
Vector graphics, Fonts, Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 7.23.

Description

Returns the number of font names in the no embed font list used by the LoadFromCanvasDC and
NewPageFromCanvasDC functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NoEmbedFontListCount: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::NoEmbedFontListCount As Long

 DLL

int DPLNoEmbedFontListCount(int InstanceID);

NoEmbedFontListGet
Vector graphics, Fonts, Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 7.23.

Description

Returns the font name at the specified index in the no embed font list used by the
LoadFromCanvasDC and NewPageFromCanvasDC functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NoEmbedFontListGet(
 Index: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::NoEmbedFontListGet(
 Index As Long) As String

 DLL

wchar_t * DPLNoEmbedFontListGet(int InstanceID, int Index);

Parameters

Index The index of the font name in the list. The first name has an Index value of 1.

NoEmbedFontListRemoveAll
Vector graphics, Fonts, Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 7.23.

Description

Removes all the font names from the no embed font list used by the LoadFromCanvasDC and
NewPageFromCanvasDC functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NoEmbedFontListRemoveAll: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::NoEmbedFontListRemoveAll As Long

 DLL

int DPLNoEmbedFontListRemoveAll(int InstanceID);

NoEmbedFontListRemoveIndex
Vector graphics, Fonts, Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 7.23.

Description

Removes the font name at the specified index from the no embed font list used by the
LoadFromCanvasDC and NewPageFromCanvasDC functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NoEmbedFontListRemoveIndex(
 Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::NoEmbedFontListRemoveIndex(
 Index As Long) As Long

 DLL

int DPLNoEmbedFontListRemoveIndex(int InstanceID, int Index);

Parameters

Index The index of the font name in the list. The first name has an Index value of 1.

Return values

0 The specified index was out of range

1 The font name was successfully removed from the list

NoEmbedFontListRemoveName
Vector graphics, Fonts, Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 7.23.

Description

Removes the specified font name from the no embed font list used by the LoadFromCanvasDC
and NewPageFromCanvasDC functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NoEmbedFontListRemoveName(
 FontName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::NoEmbedFontListRemoveName(
 FontName As String) As Long

 DLL

int DPLNoEmbedFontListRemoveName(int InstanceID, wchar_t * FontName);

Parameters

FontName The font name to remove from the list

Return values

0 The specified font name was not found in the list

1 The font name was successfully removed from the list

NormalizePage
Text, Page manipulation

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Version history

This function was introduced in Quick PDF Library version 7.25.

Description

Moves and/or rotates the contents of the page so that subsequent drawing operations are at the
expected position on the page. All the page boundary boxes are adjusted to the physical size of the
page and the page's rotation attribute is reset to zero.

Syntax

 Delphi

function TDebenuPDFLibrary1113.NormalizePage(
 NormalizeOptions: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::NormalizePage(
 NormalizeOptions As Long) As Long

 DLL

int DPLNormalizePage(int InstanceID, int NormalizeOptions);

Parameters

NormalizeOptions 0 = Standard normalization
1 = Normalize and also balance the graphics state stack
2 = Maintain existing page structure
3 = Maintain existing page structure and balance the stack

OpenOutline
Outlines

Description

Expands an outline item (bookmark).

Syntax

 Delphi

function TDebenuPDFLibrary1113.OpenOutline(OutlineID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::OpenOutline(
 OutlineID As Long) As Long

 DLL

int DPLOpenOutline(int InstanceID, int OutlineID);

Parameters

OutlineID The ID of the outline item to work with. This ID is returned by the NewOutline or
NewStaticOutline functions, or retrieved with the GetOutlineID function or
Get*Outline functions.

Return values

0 The Outline ID provided was invalid

1 The outline item was expanded

OptionalContentGroupCount
Content Streams and Optional Content Groups

Description

Returns the number of optional content groups in the selected document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.OptionalContentGroupCount: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::OptionalContentGroupCount As Long

 DLL

int DPLOptionalContentGroupCount(int InstanceID);

OutlineCount
Outlines

Description

Returns the number of outline items (bookmarks) in the selected document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.OutlineCount: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::OutlineCount As Long

 DLL

int DPLOutlineCount(int InstanceID);

OutlineTitle
Outlines

Description

Returns the title of an outline item (bookmark).

Syntax

 Delphi

function TDebenuPDFLibrary1113.OutlineTitle(
 OutlineID: Integer): WideString;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::OutlineTitle(
 OutlineID As Long) As String

 DLL

wchar_t * DPLOutlineTitle(int InstanceID, int OutlineID);

Parameters

OutlineID The ID of the outline item to work with. This ID is returned by the NewOutline or
NewStaticOutline functions, or retrieved with the GetOutlineID function or
Get*Outline functions.

PageCount
Document properties

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Reports the total number of pages in the selected document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.PageCount: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::PageCount As Long

 DLL

int DPLPageCount(int InstanceID);

PageHasFontResources
Page properties

Version history

This function was introduced in Quick PDF Library version 9.16.

Description

Analyses the specified page to identify font resources.

Syntax

 Delphi

function TDebenuPDFLibrary1113.PageHasFontResources(
 PageNumber: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::PageHasFontResources(
 PageNumber As Long) As Long

 DLL

int DPLPageHasFontResources(int InstanceID, int PageNumber);

Parameters

PageNumber The number of the page to anaylse

Return values

0 The specified page does not have font resources

1 The specified page has at least one font resource

PageHeight
Page properties

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Returns the height of the selected page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.PageHeight: Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::PageHeight As Double

 DLL

double DPLPageHeight(int InstanceID);

Return values

The height of the selected page (in points, millimetres or inches)

PageJavaScriptAction
JavaScript, Page properties

Description

This function is used to add JavaScript to a page open or page close event.

Syntax

 Delphi

function TDebenuPDFLibrary1113.PageJavaScriptAction(ActionType,
 JavaScript: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::PageJavaScriptAction(
 ActionType As String, JavaScript As String) As Long

 DLL

int DPLPageJavaScriptAction(int InstanceID, wchar_t * ActionType,
 wchar_t * JavaScript);

Parameters

ActionType The event to add the JavaScript to:
"O" = (capital letter O) This event occurs when the page is opened
"C" = This event occurs when the page is closed

JavaScript This is the JavaScript to execute when the event occurs.

Return values

0 The specified ActionType was not valid

1 The JavaScript was added successfully

PageRotation
Page properties

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Returns the rotation of the selected page. This value should always be a multiple of 90 degrees.

Syntax

 Delphi

function TDebenuPDFLibrary1113.PageRotation: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::PageRotation As Long

 DLL

int DPLPageRotation(int InstanceID);

PageWidth
Page properties

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Returns the width of the selected page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.PageWidth: Double;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::PageWidth As Double

 DLL

double DPLPageWidth(int InstanceID);

Return values

The width of the selected page (in points, millimetres or inches)

PrintDocument
Rendering and printing

Description

Renders certain pages from the selected document to the specified printer.

Syntax

 Delphi

function TDebenuPDFLibrary1113.PrintDocument(PrinterName: WideString;
 StartPage, EndPage, Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::PrintDocument(
 PrinterName As String, StartPage As Long, EndPage As Long,
 Options As Long) As Long

 DLL

int DPLPrintDocument(int InstanceID, wchar_t * PrinterName, int StartPage,
 int EndPage, int Options);

Parameters

PrinterName The name of the printer to use for printing. This is the name that appears in
the Windows Print Manager. Use the GetPrinterNames function to return a list
of valid printers on the system. A value returned by the NewCustomPrinter
function can also be used here.

StartPage The first page to print

EndPage The last page to print

Options Use the PrintOptions function to obtain a value for this parameter

Return values

0 The pages could not be printed, usually caused by the StartPage and EndPage
parameters being out of range

1 The pages were printed successfully

PrintDocumentToFile
Rendering and printing

Version history

This function was introduced in Quick PDF Library version 7.18.

Description

Renders certain pages from the selected document to the specified printer. The print output is
directed to the specified spool file.
Not all printer drivers support the DocInfo.lpszOutput field so results may vary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.PrintDocumentToFile(
 PrinterName: WideString; StartPage, EndPage, Options: Integer;
 FileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::PrintDocumentToFile(
 PrinterName As String, StartPage As Long, EndPage As Long,
 Options As Long, FileName As String) As Long

 DLL

int DPLPrintDocumentToFile(int InstanceID, wchar_t * PrinterName,
 int StartPage, int EndPage, int Options, wchar_t * FileName);

Parameters

PrinterName The name of the printer to use for printing. This is the name that appears in
the Windows Print Manager. Use the GetPrinterNames function to return a list
of valid printers on the system. A value returned by the NewCustomPrinter
function can also be used here.

StartPage The first page to print

EndPage The last page to print

Options Use the PrintOptions function to obtain a value for this parameter

FileName The file name where print output should be spooled to.

PrintDocumentToPrinterObject
Rendering and printing

Version history

This function was introduced in Quick PDF Library version 7.11.

Description

Renders certain pages from the selected document to the printer specified by the Delphi TPrinter
object.

Syntax

 Delphi

function TDebenuPDFLibrary1113.PrintDocumentToPrinterObject(
 APrinter: TPrinter; StartPage, EndPage, Options: Integer): Integer;

Parameters

APrinter A Delph TPrinter object

StartPage The first page to print

EndPage The last page to print

Options Use the PrintOptions function to obtain a value for this parameter

PrintMode
Rendering and printing

Version history

This function was introduced in Quick PDF Library version 11.11.

Description

This function is used to handle printing process.

Syntax

 Delphi

function TDebenuPDFLibrary1113.PrintMode(Mode: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::PrintMode(Mode As Long) As Long

 DLL

int DPLPrintMode(int InstanceID, int Mode);

Parameters

Mode 0 = Smaller size, normal quality
1 = Higher size, higher quality
2 = Lossless quality

Return values

The current printing mode

PrintOptions
Rendering and printing

Description

This function is used to construct a value that can be used as the Options parameter to the
PrintDocument function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.PrintOptions(PageScaling,
 AutoRotateCenter: Integer; Title: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::PrintOptions(
 PageScaling As Long, AutoRotateCenter As Long,
 Title As String) As Long

 DLL

int DPLPrintOptions(int InstanceID, int PageScaling, int AutoRotateCenter,
 wchar_t * Title);

Parameters

PageScaling 0 = None
1 = Fit to paper
2 = Shrink large pages

AutoRotateCenter 0 = Do not rotate pages automatically
1 = Rotate pages to fit on the output medium, and center on the page
-1 = Rotate pages to fit on the output medium, and center on the page
but rotate anticlockwise instead.

Title The title of the document. This title is used by Windows in the Print
Manager and for network title pages

PrintPages
Rendering and printing

Version history

This function was introduced in Quick PDF Library version 9.14.

Description

Renders a page range list from the selected document to the specified printer.

Syntax

 Delphi

function TDebenuPDFLibrary1113.PrintPages(PrinterName,
 PageRanges: WideString; Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::PrintPages(
 PrinterName As String, PageRanges As String,
 Options As Long) As Long

 DLL

int DPLPrintPages(int InstanceID, wchar_t * PrinterName,
 wchar_t * PageRanges, int Options);

Parameters

PrinterName The name of the printer to use for printing. This is the name that appears in
the Windows Print Manager. Use the GetPrinterNames function to return a list
of valid printers on the system. A value returned by the NewCustomPrinter
function can also be used here.

PageRanges A list of pages to print, for example "1-10,12,14"

Options Use the PrintOptions function to obtain a value for this parameter

Return values

0 An error occurred

1 The pages were printed successfully

PrintPagesToFile
Rendering and printing

Version history

This function was introduced in Quick PDF Library version 9.14.

Description

Renders a list of page ranges from the selected document to the specified printer. The print output
is directed to the specified spool file.
Not all printer drivers support the DocInfo.lpszOutput field so results may vary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.PrintPagesToFile(PrinterName,
 PageRanges: WideString; Options: Integer; FileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::PrintPagesToFile(
 PrinterName As String, PageRanges As String, Options As Long,
 FileName As String) As Long

 DLL

int DPLPrintPagesToFile(int InstanceID, wchar_t * PrinterName,
 wchar_t * PageRanges, int Options, wchar_t * FileName);

Parameters

PrinterName The name of the printer to use for printing. This is the name that appears in
the Windows Print Manager. Use the GetPrinterNames function to return a list
of valid printers on the system. A value returned by the NewCustomPrinter
function can also be used here.

PageRanges A list of pages to print, for example "1-10,12,14"

Options Use the PrintOptions function to obtain a value for this parameter

FileName Use the PrintOptions function to obtain a value for this parameter

Return values

0 An error occurred

1 The pages were printed successfully

PrintPagesToPrinterObject
Rendering and printing

Version history

This function was introduced in Quick PDF Library version 9.14.

Description

Renders a page range list from the selected document to the printer specified by the Delphi
TPrinter object.

Syntax

 Delphi

function TDebenuPDFLibrary1113.PrintPagesToPrinterObject(
 APrinter: TPrinter; PageRanges: WideString; Options: Integer): Integer;

Parameters

APrinter A Delph TPrinter object

PageRanges A list of pages to print, for example "1-10,12,14"

Options Use the PrintOptions function to obtain a value for this parameter

ReleaseBuffer
Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 7.11.

Description

Releases a buffer created with the CreateBuffer function.

Syntax

 DLL

int DPLReleaseBuffer(int InstanceID, char * Buffer);

Parameters

Buffer A value returned from the CreateBuffer function

Return values

0 The InstanceID was invalid, or the Buffer has already been released or is invalid

1 The buffer was released successfully

ReleaseImage
Image handling

Version history

This function was introduced in Quick PDF Library version 8.15.

Description

Releases the temporary memory used by an image that was added to the PDF after the document
was opened (using functions such as AddImageFromFile) or an image that was found using the
FindImages function.
Releasing the image does not affect the PDF itself, images that have already been drawn onto the
page will not be removed.
After the image has been released the ImageID is no longer valid and cannot be used with
functions such as SelectImage.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ReleaseImage(ImageID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ReleaseImage(
 ImageID As Long) As Long

 DLL

int DPLReleaseImage(int InstanceID, int ImageID);

Parameters

ImageID The ID of the image to release

Return values

0 The image could not be released. The ImageID parameter could be invalid or the
ImageID doesn't reference an image contained in the selected document.

1 The image was released successfully.

ReleaseImageList
Image handling, Page properties

Version history

This function was introduced in Quick PDF Library version 8.15.

Description

Releases the specified image list including all the image data extracted from the images in the list.
Releasing the image list does not affect the original images.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ReleaseImageList(
 ImageListID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ReleaseImageList(
 ImageListID As Long) As Long

 DLL

int DPLReleaseImageList(int InstanceID, int ImageListID);

Parameters

ImageListID A value returned by the GetPageImageList function

Return values

0 The image list could not be released. The ImageListID parameter could be
invalid or the ImageListID doesn't reference an image list from the selected
document.

1 The image list was released successfully.

ReleaseLibrary
Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 7.11.

Description

Frees the object created with the CreateLibrary function.

Syntax

 DLL

int DPLReleaseLibrary(int InstanceID);

Return values

0 The library could not be released. The InstanceID value may be incorrect.

1 The library was released successfully

ReleaseSignProcess
Security and Signatures

Version history

This function was introduced in Quick PDF Library version 9.14.

Description

Releases a signature process from memory.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ReleaseSignProcess(
 SignProcessID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ReleaseSignProcess(
 SignProcessID As Long) As Long

 DLL

int DPLReleaseSignProcess(int InstanceID, int SignProcessID);

Parameters

SignProcessID A value returned by the NewSignProcessFromFile,
NewSignProcessFromStream or NewSignProcessFromString functions.

Return values

0 Invalid SignProcessID

1 Successfully deleted the signing process

ReleaseStringList
Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 9.14.

Description

Releases the specified string list.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ReleaseStringList(
 StringListID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ReleaseStringList(
 StringListID As Long) As Long

 DLL

int DPLReleaseStringList(int InstanceID, int StringListID);

Parameters

StringListID The ID of the string list as returned by the CheckFileCompliance function.

Return values

0 The string list could not be released, the StringListID parameter is invalid.

1 Success

ReleaseTextBlocks
Text, Extraction

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Releases the memory used by a text block list.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ReleaseTextBlocks(
 TextBlockListID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ReleaseTextBlocks(
 TextBlockListID As Long) As Long

 DLL

int DPLReleaseTextBlocks(int InstanceID, int TextBlockListID);

Parameters

TextBlockListID A value returned by the ExtractPageTextBlocks function

RemoveAppearanceStream
Form fields

Description

Removes the appearance stream of the specified form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.RemoveAppearanceStream(
 Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::RemoveAppearanceStream(
 Index As Long) As Long

 DLL

int DPLRemoveAppearanceStream(int InstanceID, int Index);

Parameters

Index The index of the form field to work with. The first form field has an index of 1.

Return values

0 The form field could not be found

1 The appearance stream of the form field was removed successfully

RemoveCustomInformation
Document properties

Version history

This function was introduced in Quick PDF Library version 7.24.

Description

Removes a custom metadata item from the document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.RemoveCustomInformation(
 Key: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::RemoveCustomInformation(
 Key As String) As Long

 DLL

int DPLRemoveCustomInformation(int InstanceID, wchar_t * Key);

Parameters

Key Specifies which key to remove

RemoveDocument
Document management

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Removes the specified document, freeing up memory.
Quick PDF Library will always ensure that there is at least one document loaded at all times.
In version 7.18 and earlier, it was only possible to remove a document if there were at least two
documents loaded.
From version 7.19 this function will always succeed. If the specified document was the only loaded
document it will be removed and replaced with a new blank document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.RemoveDocument(
 DocumentID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::RemoveDocument(
 DocumentID As Long) As Long

 DLL

int DPLRemoveDocument(int InstanceID, int DocumentID);

Parameters

DocumentID The ID of the document to remove

Return values

0 The specified document does not exist or could not be removed.

1 The specified document was removed successfully

RemoveEmbeddedFile
Document properties

Version history

This function was introduced in Quick PDF Library version 7.19.

Description

Removes the specified embedded file from the document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.RemoveEmbeddedFile(Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::RemoveEmbeddedFile(
 Index As Long) As Long

 DLL

int DPLRemoveEmbeddedFile(int InstanceID, int Index);

Parameters

Index The index of the embedded file. Must be a value between 1 and the value returned
by EmbeddedFileCount.

Return values

0 The embedded file could not be removed.

1 The embedded file was successfully removed from the document.

RemoveFormFieldBackgroundColor
Form fields

Version history

This function was introduced in Quick PDF Library version 9.12.

Description

Removes the form field's background color entry

Syntax

 Delphi

function TDebenuPDFLibrary1113.RemoveFormFieldBackgroundColor(
 Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::RemoveFormFieldBackgroundColor(
 Index As Long) As Long

 DLL

int DPLRemoveFormFieldBackgroundColor(int InstanceID, int Index);

Parameters

Index The index of the form field

Return values

0 The Index parameter was incorrect

1 Success

RemoveFormFieldBorderColor
Form fields

Version history

This function was introduced in Quick PDF Library version 8.14.

Description

Removes the form field's border color entry

Syntax

 Delphi

function TDebenuPDFLibrary1113.RemoveFormFieldBorderColor(
 Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::RemoveFormFieldBorderColor(
 Index As Long) As Long

 DLL

int DPLRemoveFormFieldBorderColor(int InstanceID, int Index);

Parameters

Index The index of the form field

Return values

0 The Index parameter was incorrect

1 Success

RemoveFormFieldChoiceSub
Form fields

Version history

This function was introduced in Quick PDF Library version 10.12.

Description

Removes a subname entry from a choice based form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.RemoveFormFieldChoiceSub(Index: Integer;
 SubName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::RemoveFormFieldChoiceSub(
 Index As Long, SubName As String) As Long

 DLL

int DPLRemoveFormFieldChoiceSub(int InstanceID, int Index,
 wchar_t * SubName);

Parameters

Index The index of the form field

SubName The string value of the subname to delete

Return values

0 The subname was not deleted. The specified form field may not have been a choice
form field.

1 The subname was successfully deleted

RemoveGlobalJavaScript
Document properties, JavaScript

Version history

This function was introduced in Quick PDF Library version 7.19.

Description

Removes a block of JavaScript from the global JavaScript store.

Syntax

 Delphi

function TDebenuPDFLibrary1113.RemoveGlobalJavaScript(
 PackageName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::RemoveGlobalJavaScript(
 PackageName As String) As Long

 DLL

int DPLRemoveGlobalJavaScript(int InstanceID, wchar_t * PackageName);

Parameters

PackageName The name that that JavaScript was stored under.

Return values

0 The specified package name could not be found

1 The JavaScript was removed successfully

RemoveOpenAction
Document properties

Version history

This function was introduced in Quick PDF Library version 9.12.

Description

Removes any open action from the document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.RemoveOpenAction: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::RemoveOpenAction As Long

 DLL

int DPLRemoveOpenAction(int InstanceID);

Return values

0 An unexpected error occurred

1 The open action, if any, was removed from the document successfully

RemoveOutline
Outlines

Description

Removes an outline from the document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.RemoveOutline(OutlineID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::RemoveOutline(
 OutlineID As Long) As Long

 DLL

int DPLRemoveOutline(int InstanceID, int OutlineID);

Parameters

OutlineID The ID of the outline item to work with. This ID is returned by the NewOutline or
NewStaticOutline functions, or retrieved with the GetOutlineID function or
Get*Outline functions.

Return values

0 The Outline ID provided was invalid

1 The outline was removed successfully

RemovePageBox
Page properties

Version history

This function was introduced in Quick PDF Library version 10.13.

Description

Removes the specified boundary rectangle from selected page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.RemovePageBox(BoxType: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::RemovePageBox(
 BoxType As Long) As Long

 DLL

int DPLRemovePageBox(int InstanceID, int BoxType);

Parameters

BoxType 1 = MediaBox (disabled for now)
2 = CropBox
3 = BleedBox
4 = TrimBox
5 = ArtBox

Return values

0 The specified boundary rectangle was not found.

1 The specified boundary rectangle was removed successfully.

RemoveSharedContentStreams
Content Streams and Optional Content Groups

Version history

This function was renamed in Quick PDF Library version 8.11.
The function name in earlier versions was RemoveSharedLayers.

Description

This function ensures that none of the pages in the selected document have shared content
streams. This is necessary before imposing a document with the CapturePage or CapturePageEx
functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.RemoveSharedContentStreams: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::RemoveSharedContentStreams As Long

 DLL

int DPLRemoveSharedContentStreams(int InstanceID);

RemoveStyle
Text

Description

Removes a style that was previously saved using the SaveStyle function. The style name is case
sensitive, it must exactly match the style name used with the SaveStyle function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.RemoveStyle(StyleName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::RemoveStyle(
 StyleName As String) As Long

 DLL

int DPLRemoveStyle(int InstanceID, wchar_t * StyleName);

Parameters

StyleName The name to associate with the style. This name is case sensitive.

Return values

0 The specified StyleName could not be found

1 The style was removed successfully

RemoveUsageRights
Document manipulation, Document properties

Version history

This function was introduced in Quick PDF Library version 7.25.

Description

Removes any usage rights from the document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.RemoveUsageRights: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::RemoveUsageRights As Long

 DLL

int DPLRemoveUsageRights(int InstanceID);

Return values

0 Usage rights were not found in the document.

1 Usage rights were successfully removed from the document.

RemoveXFAEntries
Document properties, Form fields

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

Removes the XFA form field entry from the document's form.

Syntax

 Delphi

function TDebenuPDFLibrary1113.RemoveXFAEntries(Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::RemoveXFAEntries(
 Options As Long) As Long

 DLL

int DPLRemoveXFAEntries(int InstanceID, int Options);

Parameters

Options Reserved for future use, should be set to 0.

RenderAsMultipageTIFFToFile
Image handling, Rendering and printing

Version history

This function was introduced in Quick PDF Library version 10.11.

Description

Renders the specified pages from the selected document to a multi-page TIFF file.
ImageOptions 1, TIFF (G4) output, is only available on Windows Vista and Windows Server 2008
and later.

Syntax

 Delphi

function TDebenuPDFLibrary1113.RenderAsMultipageTIFFToFile(DPI: Double;
 PageRanges: WideString; ImageOptions, OutputOptions: Integer;
 FileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::RenderAsMultipageTIFFToFile(
 DPI As Double, PageRanges As String, ImageOptions As Long,
 OutputOptions As Long, FileName As String) As Long

 DLL

int DPLRenderAsMultipageTIFFToFile(int InstanceID, double DPI,
 wchar_t * PageRanges, int ImageOptions, int OutputOptions,
 wchar_t * FileName);

Parameters

DPI The DPI to render the pages at

PageRanges A list of pages to render, for example "5-10,3,12".

ImageOptions 0=24-bit RGB TIFF
1=1-bit G4 TIFF

OutputOptions Reserved for future use, should be set to 0.

FileName The file name and path of the TIFF file to create

Return values

0 Invalid parameters or cannot create file

1 The multipage TIFF was created successfully

RenderDocumentToFile
Rendering and printing

Description

Renders certain pages from the selected document to an image file on disk.
By default rendering uses the GDI+ system which is available by default in Windows XP and later.
Option 10, TIFF (G4) output, is only available on Windows Vista and Windows Server 2008 and later.

It is also possible to render using Cairo, use the SetCairoFileName and SelectRenderer functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.RenderDocumentToFile(DPI: Double;
 StartPage, EndPage, Options: Integer; FileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::RenderDocumentToFile(
 DPI As Double, StartPage As Long, EndPage As Long,
 Options As Long, FileName As String) As Long

 DLL

int DPLRenderDocumentToFile(int InstanceID, double DPI, int StartPage,
 int EndPage, int Options, wchar_t * FileName);

Parameters

DPI The DPI to use for the rendering. A value of 72 will give the same result as Acrobat
when the zoom level is 100%.

StartPage The first page to print

EndPage The last page to print

Options 0 = BMP output
1 = JPEG output
2 = WMF output
3 = EMF output
4 = EPS output
5 = PNG output
6 = GIF output
7 = TIFF output
8 = EMF+ output
9 = HTML5 output
10 = G4 TIFF output

FileName The path and filename to use for the file.
Each page will be stored in a separate file.
If this parameter contains "%p" this will be replaced by the page number, otherwise
the page number will be appended to the end of the filename before the extension.
For example, if FileName is "output.jpg" and page 10 is rendered the image will be
stored in a file called "output10.jpg".
If FileName is "page%poutput.bmp" and page 5 is rendered the image will be stored
in a file called "page5output.bmp".

Return values

0 The pages were not rendered successfully. This is usually caused by the StartPage or
EndPage parameters being out of range.

1 The pages were rendered successfully

RenderPageToDC
Rendering and printing

Version history

This function was introduced in Quick PDF Library version 7.12.

Description

This function renders a page from the selected document directly onto a graphics surface.
On Windows the target surface is a Device Context handle (DC).
By default rendering uses the GDI+ system which is available by default in Windows XP and later.
It is also possible to render using Cairo, use the SetCairoFileName and SelectRenderer
functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.RenderPageToDC(DPI: Double; Page: Integer;
 DC: HDC): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::RenderPageToDC(DPI As Double,
 Page As Long, DC As Long) As Long

 DLL

int DPLRenderPageToDC(int InstanceID, double DPI, int Page, HDC DC);

Parameters

DPI The DPI to use when rendering the page

Page The page number to render

DC The device context handle

Return values

0 Page could not be rendered

1 Page was rendered successfully

RenderPageToDCClip
Rendering and printing

Description

This function renders a page from the selected document directly onto a graphics surface with a
clip paths. It is possible to use a render offset for clip paths definitions SetRenderDCOffset
On Windows the target surface is a Device Context handle (DC).
By default rendering uses the GDI+ system which is available by default in Windows XP and later.

Syntax

 Delphi

function TDebenuPDFLibrary1113.RenderPageToDCClip(DPI: Double; Page,
 DC: Integer; const Clip: AnsiString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::RenderPageToDCClip(
 DPI As Double, Page As Long, DC As Long,
 Clip As String) As Long

 DLL

int DPLRenderPageToDCClip(int InstanceID, double DPI, int Page, int DC,
 char * Clip);

Parameters

DPI Rendering DPI

Page Page number to render

DC The device context handle

Clip Initial clip rectangle array, defined by left top positions, widths and heights with
comma delimiters (L1 T1 W1 H1 L2 T2 W2 H2 ... Ln Tn Wn Hn)

Return values

1 Render successfull

0 Render failed

RenderPageToFile
Rendering and printing

Description

This function renders a page from the selected document to a file on disk. The data written to disk
depends on the Options parameter.
By default rendering uses the GDI+ system which is available by default in Windows XP and later.
Option 10, TIFF (G4) output, is only available on Windows Vista and Windows Server 2008 and
later.
It is also possible to render using Cairo, use the SetCairoFileName and SelectRenderer
functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.RenderPageToFile(DPI: Double; Page,
 Options: Integer; FileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::RenderPageToFile(DPI As Double,
 Page As Long, Options As Long, FileName As String) As Long

 DLL

int DPLRenderPageToFile(int InstanceID, double DPI, int Page, int Options,
 wchar_t * FileName);

Parameters

DPI The DPI to use when rendering the page. Values over 300 will cause excessive
memory usage.

Page The page number to render

Options 0 = BMP output
1 = JPEG output
2 = WMF output
3 = EMF output
4 = EPS output
5 = PNG output
6 = GIF output
7 = TIFF (LZW) output
8 = EMF+ output
9 = HTML5 output
10 = TIFF (G4) output

FileName The path and file name of the file to create to store the rendered page image data
in.

Return values

0 The page could not be rendered

1 The page was rendered correctly and the image file was saved to disk

2 The file could not be written to disk

RenderPageToStream
Rendering and printing

Description

This function is only available in the Delphi edition. It renders a page from the selected document
to a TStream object. The data placed into the stream depends on the Options parameter.
By default rendering uses the GDI+ system which is available by default in Windows XP and later.
Option 10, TIFF (G4) output, is only available on Windows Vista and Windows Server 2008 and
later.
It is also possible to render using Cairo, use the SetCairoFileName and SelectRenderer
functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.RenderPageToStream(DPI: Double; Page,
 Options: Integer; Target: TStream): Integer;

Parameters

DPI The DPI to use when rendering the page. Values over 300 will cause excessive
memory usage.

Page The page number to render

Options 0 = BMP output
1 = JPEG output
2 = WMF output
3 = EMF output
4 = EPS output
5 = PNG output
6 = GIF output
7 = TIFF output
8 = EMF+ output
9 = HTML5 output
10 = TIFF (G4) output

Target The stream to place the rendered page into

RenderPageToString
Rendering and printing

Description

This function renders a page from the selected document to a string. The data in the returned
string depends on the Options parameter.
By default rendering uses the GDI+ system which is available by default in Windows XP and later.
Option 10, TIFF (G4) output, is only available on Windows Vista and Windows Server 2008 and
later.
It is also possible to render using Cairo, use the SetCairoFileName and SelectRenderer
functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.RenderPageToString(DPI: Double; Page,
 Options: Integer): AnsiString;

 DLL

char * DPLRenderPageToString(int InstanceID, double DPI, int Page,
 int Options);

Parameters

DPI The DPI to use when rendering the page. Values over 300 will cause excessive
memory usage.

Page The page number to render

Options 0 = BMP output
1 = JPEG output
2 = WMF output
3 = EMF output
4 = EPS output
5 = PNG output
6 = GIF output
7 = TIFF output
8 = EMF+ output
9 = HTML5 output
10 = TIFF (G4) output

RenderPageToVariant
Rendering and printing

Description

This function is only available in the ActiveX edition. It renders a page from the selected document
to a byte array Variant. The data in the byte array depends on the Options parameter.
By default rendering uses the GDI+ system which is available by default in Windows XP and later.
Option 10, TIFF (G4) output, is only available on Windows Vista and Windows Server 2008 and
later.
It is also possible to render using Cairo, use the SetCairoFileName and SelectRenderer
functions.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::RenderPageToVariant(
 DPI As Double, Page As Long, Options As Long) As Variant

Parameters

DPI The DPI to use when rendering the page. Values over 300 will cause excessive
memory usage.

Page The page number to render

Options 0 = BMP output
1 = JPEG output
2 = WMF output
3 = EMF output
4 = EPS output
5 = PNG output
6 = GIF output
7 = TIFF output
8 = EMF+ output
9 = HTML5 output
10 = G4 TIFF output

ReplaceFonts
Fonts, Document manipulation

Description

Replaces embedded fonts with equivalent "Standard" fonts, reducing the file size. In version 9.11
and earlier, only Courier and Courier-Bold were replaced. As of version 9.12, fonts are replaced
with the one of the 14 "Standard" fonts listed below:
Courier
Courier-Bold
Courier-BoldOblique
Courier-Oblique
Helvetica
Helvetica-Bold
Helvetica-BoldOblique
Helvetica-Oblique
Times-Roman
Times-Bold
Times-Italic
Times-BoldItalic
Symbol
ZapfDingbats
For example, ArialMT font will be replaced with Helvetica "Standard". Note that the "Standard"
fonts do not contain the full Unicode character set but only the 229 characters defined by the
WinAnsiEncoding table.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ReplaceFonts(Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ReplaceFonts(
 Options As Long) As Long

 DLL

int DPLReplaceFonts(int InstanceID, int Options);

Parameters

Options 0 = Default. Standard and much preferrered level of font replacement
1 = Special option to replace fonts and also remove the subsetted fonts and also the
WinAnsiEncoding entry. This will only work if there is no other Encoding entry and is
for very specific documents only.
10 = Do not replace the FontDescriptor but delete the FontFile2 embedded font data.
This will turn an embedded font into a non embedded font for fonts that match
closely to a Standard font such as ArialMT. Most viewers will use Arial to render
ArialMT anyway if it is not embedded.

Return values

0 Nothing was changed

1 A replacement of some type was made.

ReplaceImage
Image handling, Page layout

Description

Replaces an image on the selected page with another image.
The original image is not removed from the document and can be reused. If the original image is
no longer needed it can be cleared using the ClearImage function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ReplaceImage(OriginalImageID,
 NewImageID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ReplaceImage(
 OriginalImageID As Long, NewImageID As Long) As Long

 DLL

int DPLReplaceImage(int InstanceID, int OriginalImageID, int NewImageID);

Parameters

OriginalImageID The ImageID of the image to be replaced

NewImageID The ImageID of the image to replace the existing image

ReplaceTag
Page manipulation

Description

This function searches through the contents of the current page, and replaces all occurrences of
Tag with NewValue.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ReplaceTag(Tag,
 NewValue: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ReplaceTag(Tag As String,
 NewValue As String) As Long

 DLL

int DPLReplaceTag(int InstanceID, wchar_t * Tag, wchar_t * NewValue);

Parameters

Tag The text to search for

NewValue The replacement text

Return values

Returns the number of times the text was replaced

RequestPrinterStatus
Rendering and printing

Version history

This function was introduced in Quick PDF Library version 7.19.

Description

Use this function to activate an alternative printing system that allows the printer status to be returned. Many of the status codes
returned are supplied by the printer driver there is no guarantee that values will contain meaningful information for all printers.

The first step is to call this function with StatusCommand=101 to enable printer status monitoring. Optionally, the print job can be
started in the paused state by calling this function again with StatusCommand=103. This might be necessary for small print jobs
that would otherwise finish before the status can be read.

The print job can then be started as usual with one of the printing functions: PrintDocument, PrintDocumentToFile or
PrintDocumentToPrinterObject.

Once the print job has started, this function can be called again repeatedly to obtain the printer status for the print job over time.
If the print job was started in the paused state, actual printing will only begin once this function is called with
StatusCommand=402.

Syntax

 Delphi

function TDebenuPDFLibrary1113.RequestPrinterStatus(
 StatusCommand: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::RequestPrinterStatus(
 StatusCommand As Long) As Long

 DLL

int DPLRequestPrinterStatus(int InstanceID, int StatusCommand);

Parameters

StatusCommand 100 = Turn off printer status monitoring.
101 = Turn on printer status monitoring.
102 = Returns 1 if printer status monitoring is active.
103 = Start print job in paused state.
104 = Start printing immediately.
105 = Returns 1 if print job will be started in paused state.
200 = Returns 1 if print job data exists.
201 = Returns the Windows Spooler JobID.
202 = Returns the job priority, from 1 to 99.
203 = Returns the job's position in the print queue.
204 = Returns the total page count.
205 = Returns the number of pages that have been printed. This is usually zero if the data type is "RAW".
206 = Returns the number of milliseconds since the print job was started.

207 = Returns the print job data type
Returns 1 if the data type contains "RAW"
Returns 2 if the data type contains "EMF"
Returns 3 if the data type contains "TEXT"
Returns 4 if the data type contains "XPS"

300 = Returns the encoded job status.
301 = Returns 1 if the job is paused.
302 = Returns 1 if there is an error.
303 = Returns 1 if the job is being deleted.
304 = Returns 1 if the job is spooling.
305 = Returns 1 if the job is printing.
306 = Returns 1 if the printer is offline.
307 = Returns 1 if the printer is out of paper.
308 = Returns 1 if the job has printed.
309 = Returns 1 if the job has been deleted.
310 = Returns 1 if the driver cannot print the print job.
311 = Returns 1 if the printer has an error that requires the user to do something.
312 = Returns 1 if the job has been restarted.
313 = For Windows XP and later, returns 1 if the job has been sent to the printer (job may not be printed
yet).
314 = For Windows Vista and later, returns 1 if the job has been retained in the print queue and cannot
be deleted.

401 = Pause the print job.
402 = Resume a paused print job.
403 = Delete the print job.

RetrieveCustomDataToFile
Document properties

Description

Retrieves custom data from the PDF that was previously stored with
StoreCustomDataFromString or StoreCustomDataFromFile. The retrieved data is written to
the specified file.

Syntax

 Delphi

function TDebenuPDFLibrary1113.RetrieveCustomDataToFile(Key,
 FileName: WideString; Location: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::RetrieveCustomDataToFile(
 Key As String, FileName As String, Location As Long) As Long

 DLL

int DPLRetrieveCustomDataToFile(int InstanceID, wchar_t * Key,
 wchar_t * FileName, int Location);

Parameters

Key The key that the data was stored under. If the location is the Document Catalog
then the key must have a special prefix assigned to you by Adobe to avoid conflicts
with other software. If the location is the Document Information Dictionary any key
can be used but should be chosen with care so they make sense to the user.

FileName The path and file name of the file to save the retrieved data to.

Location 1 = Retrieve the data from the Document Information Dictionary
2 = Retrieve the data from the Document Catalog

Return values

0 There was no data stored in the specified key, or the file to save the data to
already exists and could not be overwritten

1 The data was retrieved and written to the specified file successfully

RetrieveCustomDataToString
Document properties

Version history

This function was renamed in Quick PDF Library version 7.11.
The function name in earlier versions was RetrieveCustomData.

Description

Retrieves custom data from the PDF that was previously stored with the StoreCustomData function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.RetrieveCustomDataToString(
 const Key: AnsiString; Location: Integer): AnsiString;

 DLL

char * DPLRetrieveCustomDataToString(int InstanceID, char * Key,
 int Location);

Parameters

Key The key that the data was stored under. If the location is the Document Catalog
then the key must have a special prefix assigned to you by Adobe to avoid conflicts
with other software. If the location is the Document Information Dictionary any key
can be used but should be chosen with care so they make sense to the user.

Location 1 = Retrieve the data from the Document Information Dictionary
2 = Retrieve the data from the Document Catalog

RetrieveCustomDataToVariant
Document properties

Description

This function is only available in the ActiveX edition. It retrieves custom data that was previously
stored with the StoreCustomData function into a variant byte array.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::RetrieveCustomDataToVariant(
 Key As String, Location As Long) As Variant

Parameters

Key The key that the data was stored under. If the location is the Document Catalog
then the key must have a special prefix assigned to you by Adobe to avoid conflicts
with other software. If the location is the Document Information Dictionary any key
can be used but should be chosen with care so they make sense to the user.

Location 1 = Retrieve the data from the Document Information Dictionary
2 = Retrieve the data from the Document Catalog

ReverseImage
Image handling

Description

This function reverses the interpretation of the color components in the selected image. For
example, a green pixel (0, 255, 0) will become a purple pixel (255, 0, 255) and a black pixel will
become a while pixel.

Syntax

 Delphi

function TDebenuPDFLibrary1113.ReverseImage(Reset: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::ReverseImage(
 Reset As Long) As Long

 DLL

int DPLReverseImage(int InstanceID, int Reset);

Parameters

Reset Indicates whether the /Decode parameter in the image dictionary should be
removed. This is necessary when the image is used as a stencil mask in Acrobat 4.0,
but may give different results for different source image types (BMP, TIFF and PNG).
Experimentation will be necessary.
0 = Keep the /Decode array and reverse the image
1 = Remove the /Decode array

RotatePage
Page properties, Page manipulation

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Used to rotate the page by a multiple of 90 degrees. This will also rotate the co-ordinate system on
the page so that it remains the same with respect to the orientation of the page. The rotation is
absolute, for example calling the function twice with a parameter of 90 will result in a page rotated
by 90 degrees, not 180 degrees.

Syntax

 Delphi

function TDebenuPDFLibrary1113.RotatePage(PageRotation: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::RotatePage(
 PageRotation As Long) As Long

 DLL

int DPLRotatePage(int InstanceID, int PageRotation);

Parameters

PageRotation The number of degrees to rotate the page by. Must be a multiple of 90
degrees (90, 180 or 270).

Return values

0 The page could not be rotated, probably because the rotation specified was not
a multiple of 90

1 The page was rotated successfully

SaveFontToFile
Fonts

Description

This function is useful for extracting fonts from a PDF that have been found with the FindFonts
function. The TTF font data for the currently selected file will be saved. Only embedded TrueType
fonts can be saved.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SaveFontToFile(
 FileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SaveFontToFile(
 FileName As String) As Long

 DLL

int DPLSaveFontToFile(int InstanceID, wchar_t * FileName);

Parameters

FileName The path and file name of the file that should be created to store the font data in.

Return values

0 The font is not embedded so there is no font data to save to the file

1 The embedded font data was written to the file successfully

SaveImageListItemDataToFile
Image handling

Version history

This function was introduced in Quick PDF Library version 8.13.

Description

Saves the image data of an image list item to a file on disk.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SaveImageListItemDataToFile(ImageListID,
 ImageIndex, Options: Integer; ImageFileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SaveImageListItemDataToFile(
 ImageListID As Long, ImageIndex As Long, Options As Long,
 ImageFileName As String) As Long

 DLL

int DPLSaveImageListItemDataToFile(int InstanceID, int ImageListID,
 int ImageIndex, int Options, wchar_t * ImageFileName);

Parameters

ImageListID A value returned by the GetPageImageList function

ImageIndex The index of the image in the list. The first image has an index of 1.

Options Reserved for future use. Should be set to 0.

ImageFileName The path and filename of the file to create

Return values

0 Image data could not be saved

1 Image data was saved successfully

SaveImageToFile
Image handling

Description

Saves the selected image to a file on disk. Only certain images can be saved. If the ImageType
function returns 0 then the image type is in an unsupported format and cannot be saved.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SaveImageToFile(
 FileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SaveImageToFile(
 FileName As String) As Long

 DLL

int DPLSaveImageToFile(int InstanceID, wchar_t * FileName);

Parameters

FileName The name of the image file to create.

Return values

0 The image could not be saved. Either an image is not selected or the file could not
be created.

1 The image was saved successfully

SaveImageToStream
Image handling

Description

This function is only available in the Delphi editions of the library. Use this function to save the
selected image to a stream. Only certain image types can be saved, see the SaveImageToFile
function for further information.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SaveImageToStream(
 OutStream: TStream): Integer;

Parameters

OutStream The image data will be written into this Delphi TStream object

Return values

0 The image data could not be saved. Either an image was not selected, or the
image data was of an unsupported type.

1 The image data was saved to the stream successfully

SaveImageToString
Image handling

Version history

This function was introduced in Quick PDF Library version 7.23.

Description

Use this function to save the selected image to a string. Only certain image types can be saved,
see the SaveImageToFile function for further information.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SaveImageToString: AnsiString;

 DLL

char * DPLSaveImageToString(int InstanceID);

SaveImageToVariant
Image handling

Version history

This function was introduced in Quick PDF Library version 7.23.

Description

Use this function to save the selected image to a variant byte array. Only certain image types can
be saved, see the SaveImageToFile function for further information.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SaveImageToVariant As Variant

SaveState
Vector graphics, Page layout

Description

Saves the current graphics state, which can be loaded later with the LoadState function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SaveState: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SaveState As Long

 DLL

int DPLSaveState(int InstanceID);

SaveStyle
Text

Description

Saves the current text properties under a named style. This style can then be applied quickly with
a single call to the ApplyStyle function. The properties that are saved include the font name, font
size, text color, alignment, underline and highlight style, spacing and scaling.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SaveStyle(StyleName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SaveStyle(
 StyleName As String) As Long

 DLL

int DPLSaveStyle(int InstanceID, wchar_t * StyleName);

Parameters

StyleName The name to associate with the style. This name is case sensitive.

SaveToFile
Document management

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Saves the selected document to a file on disk.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SaveToFile(FileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SaveToFile(
 FileName As String) As Long

 DLL

int DPLSaveToFile(int InstanceID, wchar_t * FileName);

Parameters

FileName The name of the file to create.

Return values

0 The file could not be created

1 The file was created successfully

SaveToStream
Document management

Description

Similar to the SaveToFile function, but allows the PDF document to be written to a stream object.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SaveToStream(OutStream: TStream): Integer;

Parameters

OutStream The stream object to write the document to

Return values

0 The document could not be saved

1 The document was saved to the stream successfully

SaveToString
Document management

Description

Similar to the SaveToFile function, but instead of creating a file the data for the PDF file is
returned as a string.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SaveToString: AnsiString;

 DLL

char * DPLSaveToString(int InstanceID);

SaveToVariant
Document management

Description

Similar to the SaveToFile function, but allows the PDF document to be written to a byte array
variant.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SaveToVariant As Variant

Return values

Empty array The document could not be generated

Array A byte array containing the PDF data

SecurityInfo
Document properties, Security and Signatures

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Returns information about the security settings of the selected document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SecurityInfo(
 SecurityItem: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SecurityInfo(
 SecurityItem As Long) As Long

 DLL

int DPLSecurityInfo(int InstanceID, int SecurityItem);

Parameters

SecurityItem 0 = Security Method
1 = User Password
2 = Owner Password
3 = Printing
4 = Changing the Document
5 = Content Copying or Extraction
6 = Authoring Comments and Form Fields
7 = Form Field Fill-in or Signing
8 = Content Accessibility Enabled
9 = Document Assembly
10 = Encryption Level
11 = Opened with User password
12 = Opened with Owner password
13 = Variable Encryption Strength

Return values

0 None

1 Adobe Standard Security

2 No

3 Yes

4 Fully Allowed

5 Not Allowed

6 Allowed

7 40-bit RC4 (Acrobat 3.x, 4.x)

8 128-bit RC4 (Acrobat 5.x)

9 Unknown

10 Low resolution

11 Blank

12 128-bit AES (Acrobat 7)

13 256-bit AES (Acrobat 9)

14 Variable length RC4 (use SecurityItem=13 to determine the length)

15 256-bit AES (Acrobat X)

SelectContentStream
Content Streams and Optional Content Groups

Version history

This function was renamed in Quick PDF Library version 8.11.
The function name in earlier versions was SelectLayer.

Description

A page in a PDF document has one or more content stream parts that together contain all the PDF
page description commands for the page.
This function selects one of the selected page's content stream parts.
All drawing operations are only carried out on the selected content stream part.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SelectContentStream(
 NewIndex: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SelectContentStream(
 NewIndex As Long) As Long

 DLL

int DPLSelectContentStream(int InstanceID, int NewIndex);

Parameters

NewIndex The index of the content stream part to select. The first content stream part has
an index of 1.

Return values

0 The specified layer could not be selected

1 The specified layer was selected successfully

SelectDocument
Document management

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Selects a document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SelectDocument(
 DocumentID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SelectDocument(
 DocumentID As Long) As Long

 DLL

int DPLSelectDocument(int InstanceID, int DocumentID);

Parameters

DocumentID The ID of the document to select

Return values

0 The document could not be selected, the ID could not be found

1 The specified document was selected successfully

SelectFont
Text, Fonts

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Select one of the fonts which have been added to the selected document. The FontID must be a
valid ID as returned by one of the Add*Font functions or returned by GetFontID .

Syntax

 Delphi

function TDebenuPDFLibrary1113.SelectFont(FontID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SelectFont(
 FontID As Long) As Long

 DLL

int DPLSelectFont(int InstanceID, int FontID);

Parameters

FontID The ID of the font to select

Return values

0 The specified ID could not be found

1 The font was selected successfully

SelectImage
Image handling, Page layout

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Select one of the images that have been added to the selected document with the AddImage*
functions or an ImageID returned using GetImageListItemIntProperty with property 405.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SelectImage(ImageID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SelectImage(
 ImageID As Long) As Long

 DLL

int DPLSelectImage(int InstanceID, int ImageID);

Parameters

ImageID The ID of the image to select

Return values

0 The specified ID could not be found

1 The image was selected successfully

SelectPage
Page layout, Page manipulation

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Selects a page of the selected document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SelectPage(PageNumber: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SelectPage(
 PageNumber As Long) As Long

 DLL

int DPLSelectPage(int InstanceID, int PageNumber);

Parameters

PageNumber The page to select

Return values

0 The specified page could not be found

1 The page was selected successfully

SelectRenderer
Rendering and printing

Version history

This function was introduced in Quick PDF Library version 8.13.

Description

Select the renderer to use during rendering. By default the GDI+ rendering engine is used.
If DPLR (AGG) is used, the SetDPLRFileName function should be used to set the path to the DPLR
DLL. All rendering functions support this rendering engine.
The required DPLR rendering DLL for this function can be found in the 'Rendering and Printing
Add-On' folder/ directory of the Debenu Quick PDF Library installation folder. Please see the
README.TXT in this folder for futher explanation if required.
If Cairo is used, the SetCairoFileName function should be used to set the path to the Cairo DLL.
This rendering engine is being deprecated, you should switch to using DPLR instead.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SelectRenderer(
 RendererID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SelectRenderer(
 RendererID As Long) As Long

 DLL

int DPLSelectRenderer(int InstanceID, int RendererID);

Parameters

RendererID 1 = GDI+
2 = Cairo
3 = DPLR (AGG)

Return values

0 The specified renderer could not be selected

1 The GDI+ renderer was selected

2 The Cairo renderer was selected

3 The DPLR (AGG) renderer was selected

SelectedDocument
Document management

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Returns the ID of the selected document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SelectedDocument: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SelectedDocument As Long

 DLL

int DPLSelectedDocument(int InstanceID);

Return values

0 A document has not been selected. This should never occur.

Non-zero The ID of the selected document

SelectedFont
Text, Fonts

Description

Returns the ID of the selected font.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SelectedFont: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SelectedFont As Long

 DLL

int DPLSelectedFont(int InstanceID);

Return values

0 No font has been selected

Non-zero The ID of the selected font

SelectedImage
Image handling, Page layout

Description

Returns the ID of the selected image.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SelectedImage: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SelectedImage As Long

 DLL

int DPLSelectedImage(int InstanceID);

Return values

0 No image has been selected

Non-zero The ID of the selected image

SelectedPage
Page layout, Page manipulation

Description

Returns currently selected page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SelectedPage: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SelectedPage As Long

 DLL

int DPLSelectedPage(int InstanceID);

SetActionURL
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

Sets the target URL of the specified action.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetActionURL(ActionID: Integer;
 NewURL: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetActionURL(ActionID As Long,
 NewURL As String) As Long

 DLL

int DPLSetActionURL(int InstanceID, int ActionID, wchar_t * NewURL);

Parameters

ActionID An ActionID as returned by the GetAnnotActionID, GetOutlineActionID or
GetFormFieldActionID functions

NewURL The new URL target

Return values

0 The specified ActionID was not valid

1 The action's target URL was set successfully

SetAnnotBorderColor
Color, Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 7.19.

Description

Sets the border color for the specified annotation.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetAnnotBorderColor(Index: Integer; Red,
 Green, Blue: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetAnnotBorderColor(
 Index As Long, Red As Double, Green As Double,
 Blue As Double) As Long

 DLL

int DPLSetAnnotBorderColor(int InstanceID, int Index, double Red,
 double Green, double Blue);

Parameters

Index The index of the annotation. The first annotation on the page has an index of 1.

Red The red component of the color

Green The green component of the color

Blue The blue component of the color

SetAnnotBorderStyle
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 7.24.

Description

Sets the border style of the specified annotation.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetAnnotBorderStyle(Index: Integer;
 Width: Double; Style: Integer; DashOn, DashOff: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetAnnotBorderStyle(
 Index As Long, Width As Double, Style As Long,
 DashOn As Double, DashOff As Double) As Long

 DLL

int DPLSetAnnotBorderStyle(int InstanceID, int Index, double Width,
 int Style, double DashOn, double DashOff);

Parameters

Index The index of the annotation. The first annotation on the page has an index of 1.

Width The width of the border

Style The style of the border:
0 = Solid
1 = Dashed
2 = Beveled
3 = Inset
Anything else = Solid

DashOn The length of the dash. Only valid if the border style is "dashed".

DashOff The length of the spaces betwen the dashes. Only valid if the border style is
"dashed".

SetAnnotContents
Annotations and hotspot links

Description

Changes the contents of an annotation.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetAnnotContents(Index: Integer;
 NewContents: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetAnnotContents(Index As Long,
 NewContents As String) As Long

 DLL

int DPLSetAnnotContents(int InstanceID, int Index, wchar_t * NewContents);

Parameters

Index The index of the annotation. The first annotation on the page has an index of
1.

NewContents The new contents of the annotation

SetAnnotDblProperty
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 9.11.

Description

Sets an double property of the specified annotation.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetAnnotDblProperty(Index, Tag: Integer;
 NewValue: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetAnnotDblProperty(
 Index As Long, Tag As Long, NewValue As Double) As Long

 DLL

int DPLSetAnnotDblProperty(int InstanceID, int Index, int Tag,
 double NewValue);

Parameters

Index The index of the annotation. The first annotation on the page has an index of 1.

Tag 105 = Left
106 = Top
107 = Width
108 = Height

NewValue The new value of the specified annotation and property.

Return values

0 The annotation specified by the Index parameter was out of range or the Tag
parameter was not valid

1 The annotation property was set successfully

SetAnnotIntProperty
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 8.16.

Description

Sets an integer property of the specified annotation.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetAnnotIntProperty(Index, Tag,
 NewValue: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetAnnotIntProperty(
 Index As Long, Tag As Long, NewValue As Long) As Long

 DLL

int DPLSetAnnotIntProperty(int InstanceID, int Index, int Tag,
 int NewValue);

Parameters

Index The index of the annotation. The first annotation on the page has an index of 1.

Tag 116 = Page number of "GoToR" action (1 is first page)
131 = Page number of "GoTo" action

NewValue The new value of the specified annotation and property.

Return values

0 The annotation specified by the Index parameter was out of range or the Tag
parameter was not valid

1 The annotation property was set successfully

SetAnnotQuadPoints
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

Sets the co-ordinates of the specified quad (rectangular area) contained within the specified
annotation. If the QuadNumber is higher than the number of quads that the annotation already has
then a new quad will be added to the annotation.
From version 7.25 the order of the co-ordinates has changed for consistency between
GetPageText and GetAnnotQuadPoints.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetAnnotQuadPoints(Index,
 QuadNumber: Integer; X1, Y1, X2, Y2, X3, Y3, X4, Y4: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetAnnotQuadPoints(
 Index As Long, QuadNumber As Long, X1 As Double, Y1 As Double,
 X2 As Double, Y2 As Double, X3 As Double, Y3 As Double,
 X4 As Double, Y4 As Double) As Long

 DLL

int DPLSetAnnotQuadPoints(int InstanceID, int Index, int QuadNumber,
 double X1, double Y1, double X2, double Y2, double X3,
 double Y3, double X4, double Y4);

Parameters

Index The index of the annotation. The first annotation on the page has an index of
1.

QuadNumber The index of the annotation's quad to set. The first quad has a QuadNumber of
1. If QuadNumber is greater than the number of existing quads then a new
quad will be added to the annotation.

X1 The horizontal co-ordinate of the bottom-left corner.

Y1 The vertical co-ordinate of the bottom-left corner.

X2 The horizontal co-ordinate of the bottom-right corner.

Y2 The vertical co-ordinate of the bottom-right corner.

X3 The horizontal co-ordinate of the top-right corner.

Y3 The vertical co-ordinate of the top-right corner.

X4 The horizontal co-ordinate of the top-left corner.

Y4 The vertical co-ordinate of the top-left corner.

Return values

0 The QuadNumber parameter was less than 1.

1 The quad was changed or a new quad was added.

SetAnnotRect
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 9.11.

Description

Sets the size and position of the specified annotation.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetAnnotRect(Index: Integer; Left, Top,
 Width, Height: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetAnnotRect(Index As Long,
 Left As Double, Top As Double, Width As Double,
 Height As Double) As Long

 DLL

int DPLSetAnnotRect(int InstanceID, int Index, double Left, double Top,
 double Width, double Height);

Parameters

Index The index of the annotation. The first annotation on the page has an index of 1.

Left The new horizontal co-ordinate of the left edge of the annotation

Top The new vertical co-ordinate of the top edge of the annotation

Width The new width of the annotation

Height The new height of the annotation

SetAnnotStrProperty
Annotations and hotspot links

Description

Sets a string property of the specified annotation.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetAnnotStrProperty(Index, Tag: Integer;
 NewValue: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetAnnotStrProperty(
 Index As Long, Tag As Long, NewValue As String) As Long

 DLL

int DPLSetAnnotStrProperty(int InstanceID, int Index, int Tag,
 wchar_t * NewValue);

Parameters

Index The index of the annotation. The first annotation on the page has an index of 1.

Tag 102 = Contents
103 = Name
110 = Subject
111 = URL of a link annotation
113 = The "Win" file name of a "Launch" action
114 = The "F" file name of a "Launch" action
115 = The "F" file name of a "GoToR" action
127 = Subject
129 = The "UF" file name of a "Launch" action
130 = The "UF" file name of a "GoToR" action

NewValue The new value of the specified annotation and property.

Return values

0 The annotation specified by the Index parameter was out of range or the Tag
parameter was not valid

1 The annotation property was set successfully

SetAnsiMode
Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 8.12.

Description

This function sets the mode used by the DLL to convert strings to and from Unicode.

Syntax

 DLL

int DPLSetAnsiMode(int InstanceID, int NewAnsiMode);

Parameters

NewAnsiMode 0 = Conversion using the current code page
1 = Conversion using UTF-8 encoding

SetAppendInputFromString
Document management

Version history

This function was introduced in Quick PDF Library version 11.11.

Description

Sets the input for a subsequent call to the AppendToString function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetAppendInputFromString(
 const Source: AnsiString): Integer;

 DLL

int DPLSetAppendInputFromString(int InstanceID, char * Source);

Parameters

Source The input PDF to base the update section on

Return values

0 Could not set input

1 Input set successfully

SetAppendInputFromVariant
Document management

Version history

This function was introduced in Quick PDF Library version 11.11.

Description

Sets the input for a subsequent call to the SetAppendToVariant function.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetAppendInputFromVariant(
 Source As Variant) As Long

Parameters

Source A byte array variant containing the input PDF to base the update section on

Return values

0 Could not set input

1 Input set successfully

SetBaseURL
Document properties, Annotations and hotspot links

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Version history

This function was introduced in Quick PDF Library version 7.15.

Description

Sets the Base URL for all URL links in the document.
For example, if the Base URL was set to "http://www.example.com/" and a URL link destination
was set to "index.html" then the link will point to "http://www.example.com/index.html".
Use the AddLinkToWeb function to add a URL link to the current page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetBaseURL(NewBaseURL: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetBaseURL(
 NewBaseURL As String) As Long

 DLL

int DPLSetBaseURL(int InstanceID, wchar_t * NewBaseURL);

Parameters

NewBaseURL The base URL to use for all URL link annotations in the document.

SetBlendMode
Vector graphics, Image handling, Text

Description

Sets the blend mode for subsequently drawn graphics.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetBlendMode(BlendMode: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetBlendMode(
 BlendMode As Long) As Long

 DLL

int DPLSetBlendMode(int InstanceID, int BlendMode);

Parameters

BlendMode The blend mode to use:
0 = Normal
1 = Multiply
2 = Screen
3 = Overlay
4 = Darken
5 = Lighten
6 = Color Dodge
7 = Color Burn
9 = Hard Light
10 = Soft Light
11 = Difference
12 = Exclusion
13 = Hue
14 = Saturation
14 = Color
15 = Luminosity

SetBreakString
Text

Description

Sets the string to use to mark line breaks. This string allows text to be split when using the
*WrappedText functions. The breakstring by default is set to CR/LF. ie. '#13#10' in Delphi.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetBreakString(
 NewBreakString: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetBreakString(
 NewBreakString As String) As Long

 DLL

int DPLSetBreakString(int InstanceID, wchar_t * NewBreakString);

Parameters

NewBreakString The string of characters to use as a break character, for example Chr(13) +
Chr(10)

SetCSDictEPSG
Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Sets the EPSG reference code for a coordinate system dictionary (see www.epsg.org).

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetCSDictEPSG(CSDictID,
 NewEPSG: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetCSDictEPSG(CSDictID As Long,
 NewEPSG As Long) As Long

 DLL

int DPLSetCSDictEPSG(int InstanceID, int CSDictID, int NewEPSG);

Parameters

CSDictID A value returned from the GetMeasureDictGCSDict or GetMeasureDictDCSDict
functions

NewEPSG The new value for the EPSG reference code

Return values

0 The CSDictID parameter was incorrect

1 Success

SetCSDictType
Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Sets the coordinate system type of a coordinate system dictionary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetCSDictType(CSDictID,
 NewDictType: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetCSDictType(CSDictID As Long,
 NewDictType As Long) As Long

 DLL

int DPLSetCSDictType(int InstanceID, int CSDictID, int NewDictType);

Parameters

CSDictID A value returned from the GetMeasureDictGCSDict or
GetMeasureDictDCSDict functions

NewDictType 1 = Geographic coordinate system (GEOGCS)
2 = Projected coordinate system (PROJCS)

Return values

0 The CSDictID parameter was incorrect or the NewDictType parameter was out
of range

1 Success

SetCSDictWKT
Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Sets the Well Known Text (WKT) describing a coordinate system dictionary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetCSDictWKT(CSDictID: Integer;
 NewWKT: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetCSDictWKT(CSDictID As Long,
 NewWKT As String) As Long

 DLL

int DPLSetCSDictWKT(int InstanceID, int CSDictID, wchar_t * NewWKT);

Parameters

CSDictID A value returned from the GetMeasureDictGCSDict or GetMeasureDictDCSDict
functions

NewWKT The new Well Known Text description

Return values

0 The CSDictID parameter was incorrect

1 Success

SetCairoFileName
Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 8.13.

Description

Sets the path and file name of the Cairo DLL. The SelectRenderer function can be used to select
the Cairo renderer rather than the default GDI+ renderer.
The Cairo DLL is usually dependent on other DLLs. If these are not all stored in the same directory
as the application, or a system directory, the Windows API function SetDllDirectory should be used
to add the correct path before calling any rendering functions.
Rendering using Cairo is currently experimental.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetCairoFileName(
 FileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetCairoFileName(
 FileName As String) As Long

 DLL

int DPLSetCairoFileName(int InstanceID, wchar_t * FileName);

Parameters

FileName The path and file name of the Cairo DLL.

Return values

0 The specified DLL was not a valid Cairo DLL

1 The specified Cairo DLL was valid

SetCapturedPageOptional
Content Streams and Optional Content Groups, Page layout

Description

Links the captured page to an optional content group. This allows the captured page to be
selectively shown in Acrobat 6 or later.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetCapturedPageOptional(CaptureID,
 OptionalContentGroupID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetCapturedPageOptional(
 CaptureID As Long, OptionalContentGroupID As Long) As Long

 DLL

int DPLSetCapturedPageOptional(int InstanceID, int CaptureID,
 int OptionalContentGroupID);

Parameters

CaptureID The ID returned by the CapturePage function when a page was
previously captured

OptionalContentGroupID An ID returned by the NewOptionalContentGroup,
GetOptionalContentGroupID or
GetOptionalContentConfigOrderItemID functions

Return values

0 The CaptureID or OptionalContentGroupID parameters were not
valid

1 The captured page was linked to the optional content group
successfully

SetCapturedPageTransparencyGroup
Content Streams and Optional Content Groups, Page layout

Version history

This function was introduced in Quick PDF Library version 8.14.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetCapturedPageTransparencyGroup(CaptureID,
 CS, Isolate, Knockout: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetCapturedPageTransparencyGroup(
 CaptureID As Long, CS As Long, Isolate As Long,
 Knockout As Long) As Long

 DLL

int DPLSetCapturedPageTransparencyGroup(int InstanceID, int CaptureID,
 int CS, int Isolate, int Knockout);

Parameters

CaptureID The ID returned by the CapturePage function when a page was previously
captured

CS The color space to use:
1 = RGB
2 = CMYK

Isolate This parameter has no effect and is reserved for future use. It should always be
set to 0.

Knockout Indicates whether items added to the page are drawn over each other or "knocked
out" of the page. In knockout mode a "hole" is made through existing objects on
the page in the shape of the new object. The new object is then drawn against the
background.
0 = Do not knockout
1 = Knockout

Return values

0 An error occurred

1 Success

SetCatalogInformation
Document properties

Description

This function allows you to store custom information in the PDF document. This is similar to the
SetCustomInformation function, but the information is stored in the Document Catalog instead
of the Document Information Dictionary. Metadata should be stored in the Document Information
Dictionary using SetCustomInformation, private content or structural information should be
stored in the Document Catalog using this fuction.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetCatalogInformation(Key,
 NewValue: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetCatalogInformation(
 Key As String, NewValue As String) As Long

 DLL

int DPLSetCatalogInformation(int InstanceID, wchar_t * Key,
 wchar_t * NewValue);

Parameters

Key The name of the key to set. This key must have a special prefix assigned to you
by Adobe to avoid conflicts with other software.

NewValue The new value of the specified key.

Return values

0 The key specified could not be set, it may have been a system key

1 The value of the specified key was set successfully

SetCharWidth
Text, Form fields

Version history

This function was introduced in Quick PDF Library version 7.11.

Description

Sets the width of a specific character in the selected font.
The width uses is a ratio to the text size. For example, if a value of 750 is used the width of the
character when output as 12pt text would be (750 / 1000) * 12.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetCharWidth(CharCode,
 NewWidth: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetCharWidth(CharCode As Long,
 NewWidth As Long) As Long

 DLL

int DPLSetCharWidth(int InstanceID, int CharCode, int NewWidth);

Parameters

CharCode The glyph character code that should be set. For example, 65 for "A".

NewWidth The new width

Return values

0 A font has not been selected

1 The width was set successfully

SetClippingPath
Vector graphics, Path definition and drawing

Description

Uses the current path as a clipping path for subsequent drawing operations.
The current path is combined with the existing clipping path, this means that the clipping area can
only be made smaller.
To restore the clipping path, call SaveState before calling this function and then LoadState to
restore the clipping path to its previous state.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetClippingPath: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetClippingPath As Long

 DLL

int DPLSetClippingPath(int InstanceID);

SetClippingPathEvenOdd
Vector graphics, Path definition and drawing

Description

Similar to the SetClippingPath function, but uses the "even odd" method for dealing with
situations where parts of the path overlap.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetClippingPathEvenOdd: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetClippingPathEvenOdd As Long

 DLL

int DPLSetClippingPathEvenOdd(int InstanceID);

SetCompatibility
Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 7.19.

Description

Sets Quick PDF Library to operate in the same way as previous versions of the library to maintain
backwards compatibility.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetCompatibility(CompatibilityItem,
 CompatibilityMode: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetCompatibility(
 CompatibilityItem As Long, CompatibilityMode As Long) As Long

 DLL

int DPLSetCompatibility(int InstanceID, int CompatibilityItem,
 int CompatibilityMode);

Parameters

CompatibilityItem 100 = DrawTableRows return value scaling (version 7.18)

CompatibilityMode 0 = Turn off compatibility
1 = Turn on compatibility

Return values

0 Either CompatibilityItem or CompatibilityMode was out of range

1 The compatibility mode was set successfully

SetContentStreamFromString
Page properties, Content Streams and Optional Content Groups, Page manipulation

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Sets the PDF page description commands in the content stream part that was selected with the
SelectContentStream function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetContentStreamFromString(
 const Source: AnsiString): Integer;

 DLL

int DPLSetContentStreamFromString(int InstanceID, char * Source);

Parameters

Source The new PDF page description commands for the content stream part

SetContentStreamFromVariant
Page properties, Content Streams and Optional Content Groups, Page manipulation

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Sets the PDF page description commands in the content stream part that was selected with the
SelectContentStream function.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetContentStreamFromVariant(
 NewValue As Variant) As Long

Parameters

NewValue A variant byte array containing the new PDF page description commands for the
content stream part

SetContentStreamOptional
Content Streams and Optional Content Groups

Version history

This function was renamed in Quick PDF Library version 8.11.
The function name in earlier versions was SetLayerOptional.

Description

A page in a PDF document has one or more content stream parts that together contain all the PDF
page description commands for the page.
This function links the content stream that was selected using the SelectContentStream function
to an optional content group. This allows the content stream part to be selectively shown in
Acrobat 6 or later.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetContentStreamOptional(
 OptionalContentGroupID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetContentStreamOptional(
 OptionalContentGroupID As Long) As Long

 DLL

int DPLSetContentStreamOptional(int InstanceID,
 int OptionalContentGroupID);

Parameters

OptionalContentGroupID An ID returned by the NewOptionalContentGroup,
GetOptionalContentGroupID or
GetOptionalContentConfigOrderItemID functions

Return values

0 The OptionalContentGroupID parameter was not valid

1 The content stream part was linked to the optional content group
successfully

SetCropBox
Page properties

Description

Sets the visible area of the selected page. The non-visible area will be "cropped" and will not be
displayed or printed.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetCropBox(Left, Top, Width,
 Height: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetCropBox(Left As Double,
 Top As Double, Width As Double, Height As Double) As Long

 DLL

int DPLSetCropBox(int InstanceID, double Left, double Top, double Width,
 double Height);

Parameters

Left The horizontal co-ordinate of the left edge of the cropping rectangle

Top The vertical co-ordinate of the top edge of the cropping rectangle

Width The width of the cropping rectangle

Height The height of the cropping rectangle

SetCustomInformation
Document properties

Description

This function is used to store custom metadata in the document. These values can later be read
from the document with the GetCustomInformation function. The data is stored in the Document
Information Dictionary. Private content or structural information should rather be stored in the
Document Catalog using the SetCatalogInformation function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetCustomInformation(Key,
 NewValue: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetCustomInformation(
 Key As String, NewValue As String) As Long

 DLL

int DPLSetCustomInformation(int InstanceID, wchar_t * Key,
 wchar_t * NewValue);

Parameters

Key Specifies which key to set

NewValue The value to set the key to.

Return values

0 The value could not be set. The Key parameter cannot be "Producer", "Creator",
"Subject", "Title", "Keywords" or "Author". For these keys use the
SetInformation function.

1 The value of the key was set successfully

SetCustomLineDash
Vector graphics

Description

Sets a custom line dash pattern.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetCustomLineDash(DashPattern: WideString;
 DashPhase: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetCustomLineDash(
 DashPattern As String, DashPhase As Double) As Long

 DLL

int DPLSetCustomLineDash(int InstanceID, wchar_t * DashPattern,
 double DashPhase);

Parameters

DashPattern A list of numeric values separated with commas. Alternate values are used for
dashes and spaces. A period must be used for numbers with decimal fractions.
For example, to make a dash-dot-dot pattern the following could be used:
"20.5,10,11,10,11,10"

DashPhase The distance within the pattern to start the dashed line. For example, if
DashPattern is "20,10,40,10" and DashPhase is set to 5, the dashed line will
start with a dash of size 15. The next dash will be 40, then 20, then 40, etc.
with spaces of 10 between each dash.

Return values

0 The dash pattern was not valid

1 The custom dash pattern was set successfully

SetDPLRFileName
Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 10.12.

Description

Sets the path and file name of the DPLR DLL. The SelectRenderer function can be used to select
the DPLR renderer rather than the default GDI+ renderer.
The required DPLR rendering DLL for this function can be found in the 'Rendering and Printing
Add-On' folder/ directory of the Debenu Quick PDF Library installation folder. Please see the
README.TXT in this folder for futher explanation if required.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetDPLRFileName(
 FileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetDPLRFileName(
 FileName As String) As Long

 DLL

int DPLSetDPLRFileName(int InstanceID, wchar_t * FileName);

Parameters

FileName The path and file name of the DPLR DLL.

Return values

0 The specified DLL was not a valid DPLR DLL

1 The specified DPLR DLL was valid

SetDecodeMode
Document properties

Version history

This function was introduced in Quick PDF Library version 11.11.

Description

This function provides a way to select between different object decoding modes.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetDecodeMode(
 NewDecodeMode: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetDecodeMode(
 NewDecodeMode As Long) As Long

 DLL

int DPLSetDecodeMode(int InstanceID, int NewDecodeMode);

Parameters

NewDecodeMode 1=Older method
2=Default method

Return values

0 The NewDecodeMode parameter was invalid

1 The decode mode was set successfully

SetDestProperties
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 8.14.

Description

Changes various properties of an existing destination.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetDestProperties(DestID, Zoom,
 DestType: Integer; Left, Top, Right, Bottom: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetDestProperties(
 DestID As Long, Zoom As Long, DestType As Long,
 Left As Double, Top As Double, Right As Double,
 Bottom As Double) As Long

 DLL

int DPLSetDestProperties(int InstanceID, int DestID, int Zoom,
 int DestType, double Left, double Top, double Right,
 double Bottom);

Parameters

DestID The ID of the destination to analyse. A valid destination ID is returned by the GetOutlineDest
function.

Zoom The zoom percentage to use when the outline destination is opened, valid values from 0 to
6400. Only used for DestType = 1, should be set to 0 for other DestTypes.

DestType 1 = "XYZ" - the target page is positioned at the point specified by the Left and Top
parameters. The Zoom parameter specifies the zoom percentage.
2 = "Fit" - the entire page is zoomed to fit the window. None of the other parameters are used
and should be set to zero.
3 = "FitH" - the page is zoomed so that the entire width of the page is visible. The height of
the page may be greater or less than the height of the window. The page is positioned at the
vertical position specified by the Top parameter.
4 = "FitV" - the page is zoomed so that the entire height of the page can be seen. The width of
the page may be greater or less than the width of the window. The page is positioned at the
horizontal position specified by the Left parameter.
5 = "FitR" - the page is zoomed so that a certain rectangle on the page is visible. The Left,
Top, Right and Bottom parameters define the rectangular area on the page.
6 = "FitB" - the page is zoomed so that it's bounding box is visible.
7 = "FitBH" - the page is positioned vertically at the position specified by the Top parameter.
The page is zoomed so that the entire width of the page's bounding box is visible.
8 = "FitBV" - the page is positioned at the horizontal position specified by the Left parameter.
The page is zoomed just enough to fit the entire height of the bounding box into the window.

Left The horizontal position used by DestType = 1, 4, 5 and 8

Top The vertical position used by DestType = 1, 3, 5 and 7

Right The horizontal position of the righthand edge of the rectangle. Used by DestType = 5

Bottom The horizontal position of the bottom of the rectangle. Used by DestType = 5

Return values

0 The destination properties could not be set. The DestID parameter might be invalid or the
Zoom and DestType parameters could be out of range.

1 The destination properties were set successfully

SetDestValue
Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 8.14.

Description

Sets one of the properties of the specified destination.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetDestValue(DestID, ValueKey: Integer;
 NewValue: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetDestValue(DestID As Long,
 ValueKey As Long, NewValue As Double) As Long

 DLL

int DPLSetDestValue(int InstanceID, int DestID, int ValueKey,
 double NewValue);

Parameters

DestID The ID of the destination to analyse. A valid destination ID is returned by the
GetOutlineDest function.

ValueKey 1=Left
2=Top
3=Bottom
4=Right
5=Zoom

NewValue The new value for the specified destination property

Return values

0 The destination value could not be set. The DestID parameter might be invalid or
the DestType parameter could be out of range.

1 The destination type was set successfully

SetDocumentMetadata
Document properties

Description

Set's the document metadata. The metadata must be a valid XMP string, see Adobe's website for
XMP documentation.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetDocumentMetadata(
 XMP: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetDocumentMetadata(
 XMP As String) As Long

 DLL

int DPLSetDocumentMetadata(int InstanceID, wchar_t * XMP);

Parameters

XMP The XMP metadata

Return values

This function always returns 1

SetEmbeddedFileStrProperty
Document properties

Version history

This function was introduced in Quick PDF Library version 7.19.

Description

Sets a property of the specified embedded file.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetEmbeddedFileStrProperty(Index,
 Tag: Integer; NewValue: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetEmbeddedFileStrProperty(
 Index As Long, Tag As Long, NewValue As String) As Long

 DLL

int DPLSetEmbeddedFileStrProperty(int InstanceID, int Index, int Tag,
 wchar_t * NewValue);

Parameters

Index The index of the embedded file. Must be a value between 1 and the value returned
by EmbeddedFileCount.

Tag 1 = File name
2 = MIME type
3 = Creation date
4 = Modification date
5 = Title
7 = Description

NewValue The new value of the specified property.

SetFillColor
Vector graphics, Color

Description

Sets the fill color for any subsequently drawn graphics. The values for Red, Green and Blue range
from 0 to 1, where 0 indicates 0% and 1 indicates 100% of the color.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFillColor(Red, Green,
 Blue: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFillColor(Red As Double,
 Green As Double, Blue As Double) As Long

 DLL

int DPLSetFillColor(int InstanceID, double Red, double Green, double Blue);

Parameters

Red The red component of the color

Green The green component of the color

Blue The blue component of the color

SetFillColorCMYK
Vector graphics, Color

Description

Sets the fill color of subsequently drawn graphics. Similar to the SetFillColor function, but allows a
color in the CMYK color space to be used. The values of the color parameters range from 0 to 1,
with 0 indicating 0% and 1 indicating 100% of the color.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFillColorCMYK(C, M, Y,
 K: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFillColorCMYK(C As Double,
 M As Double, Y As Double, K As Double) As Long

 DLL

int DPLSetFillColorCMYK(int InstanceID, double C, double M, double Y,
 double K);

Parameters

C The cyan component of the color

M The magenta component of the color

Y The yellow component of the color

K The black component of the color

SetFillColorSep
Vector graphics, Color

Description

Sets the fill color of subsequently drawn graphics. Similar to the SetFillColor function, but a tint of
a separation color added with the AddSeparationColor function is used.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFillColorSep(ColorName: WideString;
 Tint: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFillColorSep(
 ColorName As String, Tint As Double) As Long

 DLL

int DPLSetFillColorSep(int InstanceID, wchar_t * ColorName, double Tint);

Parameters

ColorName The name of the separation color that was used with the AddSeparationColor
function

Tint The amount of color to use. 0 indicates no color (white), 1 indicates maximum
color.

Return values

0 The separation color name could not be found

1 The fill color was set successfully

SetFillShader
Vector graphics, Path definition and drawing, Color

Version history

This function was introduced in Quick PDF Library version 7.11.

Description

Sets the fill to the specified shader for subsequently drawn graphics.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFillShader(
 ShaderName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFillShader(
 ShaderName As String) As Long

 DLL

int DPLSetFillShader(int InstanceID, wchar_t * ShaderName);

Parameters

ShaderName The shader name that was used when the shader was created.

Return values

0 The shader could not be found

1 The shader fill was setup correctly

SetFillTilingPattern
Vector graphics, Color

Version history

This function was introduced in Quick PDF Library version 8.16.

Description

Sets the current fill to the specified tiling pattern.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFillTilingPattern(
 PatternName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFillTilingPattern(
 PatternName As String) As Long

 DLL

int DPLSetFillTilingPattern(int InstanceID, wchar_t * PatternName);

Parameters

PatternName The pattern name that was used with the
NewTilingPatternFromCapturedPage function

Return values

0 The PatternName parameter was invalid

1 Success

SetFindImagesMode
Image handling, Document management, Page properties

Version history

This function was introduced in Quick PDF Library version 7.22.

Description

Sets the search mode used by the FindImages function.
The default search mode runs a recursive search in the resources of all the pages and annotations
in the document. This is the fastest method and requires the least amount of memory, however
unused images will not be found.
The full search mode examines each object in the document. This takes more time and requires
more memory, however all images will be located even if they are not used by any of the pages or
annotations in the document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFindImagesMode(
 NewFindImagesMode: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFindImagesMode(
 NewFindImagesMode As Long) As Long

 DLL

int DPLSetFindImagesMode(int InstanceID, int NewFindImagesMode);

Parameters

NewFindImagesMode 1 = Default search mode
2 = Full search mode
3 = Default search mode, full convert
4 = Full search mode, full convert

Return values

0 An invalid value for the NewFindImagesMode parameter was used

1 The search mode was changed successfully

SetFontEncoding
Fonts

Description

Sets the encoding for the selected font.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFontEncoding(Encoding: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFontEncoding(
 Encoding As Long) As Long

 DLL

int DPLSetFontEncoding(int InstanceID, int Encoding);

Parameters

Encoding The encoding to use for the font:
0 = StandardEncoding
1 = MacRomanEncoding
2 = WinAnsiEncoding
3 = Deprecated (was PDFDocEncoding)
4 = MacExpertEncoding
5 = Do not specify encoding

Return values

0 No font was selected, or the encoding could not be set

1 The encoding for the selected font was set successfully

SetFontFlags
Fonts

Description

Sets the flags for the selected font. Usually these flags are set automatically when the font is
added, but in some circumstance (for example with symbolic Type1 fonts) the flags cannot be
automatically set. This function allows you to ensure the fonts have the correct flags.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFontFlags(Fixed, Serif, Symbolic,
 Script, Italic, AllCap, SmallCap, ForceBold: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFontFlags(Fixed As Long,
 Serif As Long, Symbolic As Long, Script As Long,
 Italic As Long, AllCap As Long, SmallCap As Long,
 ForceBold As Long) As Long

 DLL

int DPLSetFontFlags(int InstanceID, int Fixed, int Serif, int Symbolic,
 int Script, int Italic, int AllCap, int SmallCap,
 int ForceBold);

Parameters

Fixed 0 = Font is proportional or variable width
1 = Font is fixed width, all glyphs have the same width

Serif 0 = Glyphs do not have serifs (short strokes drawn at an angle on the top and
bottom of glyph stems)
1 = Glyphs have serifs

Symbolic 0 = Font contains glyphs in the standard Latin character set
1 = Font contains symbols

Script 0 = Font contains regular glyphs
1 = Glyphs resemble cursive handwriting

Italic 0 = Regular font
1 = Glyphs have dominant vertical strokes that are slanted

AllCap 0 = Font contains lowercase letters
1 = Font contains only uppercase letters

SmallCap 0 = Regular font
1 = Lowercase glyphs look like the corresponding uppercase glyphs but are
smaller in size

ForceBold 0 = Regular font
1 = Force font to be rendered with a bold effect even at small sizes

Return values

0 A font has not been selected

1 The font flags were set successfully

SetFormFieldAlignment
Form fields

Description

Sets the alignment for the specified form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldAlignment(Index,
 Alignment: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldAlignment(
 Index As Long, Alignment As Long) As Long

 DLL

int DPLSetFormFieldAlignment(int InstanceID, int Index, int Alignment);

Parameters

Index The index of the form field to work with. The first form field has an index of 1.

Alignment The alignment to use for the form field:
0 = Left alignment
1 = Centered
2 = Right alignment

Return values

0 The form field index was invalid

1 The alignment of the form field was set successfully

SetFormFieldAnnotFlags
Form fields

Description

Set the "annotation" flags for the specified form field. This is for advanced use, see the PDF
specification for details.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldAnnotFlags(Index,
 NewFlags: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldAnnotFlags(
 Index As Long, NewFlags As Long) As Long

 DLL

int DPLSetFormFieldAnnotFlags(int InstanceID, int Index, int NewFlags);

Parameters

Index The index of the form field to change

NewFlags The new flags value to apply

Return values

0 The specified form field could not be found

1 The "annotation" flags for the specified form field were set successfully

SetFormFieldBackgroundColor
Form fields, Color

Description

Sets the background color of the specified form field. The values of the color parameters range
from 0 to 1, with 0 indicating 0% and 1 indicating 100% of the color.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldBackgroundColor(Index: Integer;
 Red, Green, Blue: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldBackgroundColor(
 Index As Long, Red As Double, Green As Double,
 Blue As Double) As Long

 DLL

int DPLSetFormFieldBackgroundColor(int InstanceID, int Index, double Red,
 double Green, double Blue);

Parameters

Index The index of the form field

Red The red component of the color

Green The green component of the color

Blue The blue component of the color

Return values

0 The form field could not be found or the parameters were invalid.

1 The background color of the form field was set successfully

SetFormFieldBackgroundColorCMYK
Form fields, Color

Description

Sets the background color of the specified form field. Similar to the SetFormFieldBorderColor
function, but the color components are specified in the CMYK color space (Cyan, Magenta, Yellow,
Black). The values of the color parameters range from 0 to 1, with 0 indicating 0% and 1 indicating
100% of the color.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldBackgroundColorCMYK(
 Index: Integer; C, M, Y, K: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldBackgroundColorCMYK(
 Index As Long, C As Double, M As Double, Y As Double,
 K As Double) As Long

 DLL

int DPLSetFormFieldBackgroundColorCMYK(int InstanceID, int Index,
 double C, double M, double Y, double K);

Parameters

Index The index of the form field

C The cyan component of the color

M The magenta component of the color

Y The yellow component of the color

K The black component of the color

Return values

0 The form field could not be found

1 The background color of the specified form field was set successfully

SetFormFieldBackgroundColorGray
Form fields, Color

Version history

This function was introduced in Quick PDF Library version 9.12.

Description

Sets the background color of the specified form field. Similar to the
SetFormFieldBackgroundColor function, but a single color component is specified in the Gray
color space. Possible values are in the range 0 to 1.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldBackgroundColorGray(
 Index: Integer; Gray: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldBackgroundColorGray(
 Index As Long, Gray As Double) As Long

 DLL

int DPLSetFormFieldBackgroundColorGray(int InstanceID, int Index,
 double Gray);

Parameters

Index The index of the form field

Gray The gray component

Return values

0 The form field could not be found

1 The background color of the specified form field was set successfully

SetFormFieldBackgroundColorSep
Form fields, Color

Description

Sets the background color of the specified form field. Similar to the SetFormFieldBorderColor
function, but a tint of a separation color added with the AddSeparationColor function is used. The
PDF specification does not support separation color spaces for form fields, so the results may not
always work, especially if the form field is later edited in Acrobat. This feature has been added for
situations where the form field will be flattened.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldBackgroundColorSep(
 Index: Integer; ColorName: WideString; Tint: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldBackgroundColorSep(
 Index As Long, ColorName As String, Tint As Double) As Long

 DLL

int DPLSetFormFieldBackgroundColorSep(int InstanceID, int Index,
 wchar_t * ColorName, double Tint);

Parameters

Index The index of the form field

ColorName The name of the separation color that was used with the AddSeparationColor
function

Tint The amount of color to use. 0 indicates no color (white), 1 indicates maximum
color.

Return values

0 The form field could not be found, or the separation color name could not be
found

1 The background color of the specified form field was set successfully

SetFormFieldBorderColor
Form fields, Color

Description

Sets the border color of the specified form field. The values of the color parameters range from 0
to 1, with 0 indicating 0% and 1 indicating 100% of the color.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldBorderColor(Index: Integer;
 Red, Green, Blue: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldBorderColor(
 Index As Long, Red As Double, Green As Double,
 Blue As Double) As Long

 DLL

int DPLSetFormFieldBorderColor(int InstanceID, int Index, double Red,
 double Green, double Blue);

Parameters

Index The index of the form field

Red The red component of the color

Green The green component of the color

Blue The blue component of the color

Return values

0 The form field could not be found or the parameters were invalid

1 The border color of the form field was set successfully

SetFormFieldBorderColorCMYK
Form fields, Color

Description

Sets the border color of the specified form field. Similar to the SetFormFieldBorderColor
function, but the color components are specified in the CMYK color space (Cyan, Magenta, Yellow,
Black). The values of the color parameters range from 0 to 1, with 0 indicating 0% and 1 indicating
100% of the color.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldBorderColorCMYK(Index: Integer;
 C, M, Y, K: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldBorderColorCMYK(
 Index As Long, C As Double, M As Double, Y As Double,
 K As Double) As Long

 DLL

int DPLSetFormFieldBorderColorCMYK(int InstanceID, int Index, double C,
 double M, double Y, double K);

Parameters

Index The index of the form field

C The amount of cyan for the color. 0 indicates no cyan, 1 indicates maximum cyan.

M The amount of magenta for the color. equivalent to the separation color. 0 indicates
no magenta, 1 indicates maximum magenta.

Y The amount of yellow for the color. 0 indicates no yellow, 1 indicates maximum
yellow.

K The amount of black for the color. 0 indicates no black, 1 indicates maximum black.

Return values

0 The form field could not be found

1 The border color of the specified form field was set successfully

SetFormFieldBorderColorGray
Form fields, Color

Version history

This function was introduced in Quick PDF Library version 9.12.

Description

Sets the border color of the specified form field. Similar to the SetFormFieldBorderColor
function, but a single color component is specified in the Gray color space. Possible values are in
the range 0 to 1.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldBorderColorGray(Index: Integer;
 Gray: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldBorderColorGray(
 Index As Long, Gray As Double) As Long

 DLL

int DPLSetFormFieldBorderColorGray(int InstanceID, int Index, double Gray);

Parameters

Index The index of the form field

Gray The gray component

Return values

0 The form field could not be found

1 The background color of the specified form field was set successfully

SetFormFieldBorderColorSep
Form fields, Color

Description

Sets the border color of the specified form field. Similar to the SetFormFieldBorderColor
function, but a tint of a separation color added with the AddSeparationColor function is used. The
PDF specification does not support separation color spaces for form fields, so the results may not
always work, especially if the form field is later edited in Acrobat. This feature has been added for
situations where the form field will be flattened.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldBorderColorSep(Index: Integer;
 ColorName: WideString; Tint: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldBorderColorSep(
 Index As Long, ColorName As String, Tint As Double) As Long

 DLL

int DPLSetFormFieldBorderColorSep(int InstanceID, int Index,
 wchar_t * ColorName, double Tint);

Parameters

Index The index of the form field

ColorName The name of the separation color that was used with the AddSeparationColor
function

Tint The amount of color to use. 0 indicates no color (white), 1 indicates maximum
color.

Return values

0 The form field could not be found, or the separation color name could not be
found

1 The border color of the specified form field was set successfully

SetFormFieldBorderStyle
Form fields

Description

Sets the width and line style of the specified form field's border.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldBorderStyle(Index: Integer;
 Width: Double; Style: Integer; DashOn, DashOff: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldBorderStyle(
 Index As Long, Width As Double, Style As Long,
 DashOn As Double, DashOff As Double) As Long

 DLL

int DPLSetFormFieldBorderStyle(int InstanceID, int Index, double Width,
 int Style, double DashOn, double DashOff);

Parameters

Index The index of the form field

Width The width of the border

Style The style of the border:
0 = Solid
1 = Dashed
2 = Beveled
3 = Inset
Anything else = Solid

DashOn The length of the dash. Only valid if the border style is "dashed".

DashOff The length of the space between dashes. Only valid if the border style is "dashed".

Return values

0 The form field could not be found or the parameters were invalid

1 The border style of the form field was set successfully

SetFormFieldBounds
Form fields

Description

Changes the physical size and position of the specified form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldBounds(Index: Integer; Left,
 Top, Width, Height: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldBounds(
 Index As Long, Left As Double, Top As Double, Width As Double,
 Height As Double) As Long

 DLL

int DPLSetFormFieldBounds(int InstanceID, int Index, double Left,
 double Top, double Width, double Height);

Parameters

Index The index of the form field to adjust

Left The new co-ordinate of the left edge of the form field

Top The new co-ordinate of the top of the form field

Width The new width of the form field

Height The new height of the form field

Return values

0 The form field could not be found

1 The form field was resized and moved successfully

SetFormFieldCalcOrder
Form fields

Description

Sets or changes the calculation order for form fields.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldCalcOrder(Index,
 Order: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldCalcOrder(
 Index As Long, Order As Long) As Long

 DLL

int DPLSetFormFieldCalcOrder(int InstanceID, int Index, int Order);

Parameters

Index The index of the form field to add to the list of calculated field

Order The order this field should be calculated in. A value of 0 means this field is the first
field to be calculated. A value of 1 means this field is the second field to be
calculated. Use a value of -1 to specify this field should be calculated last out of the
fields which have already been added to the calculation order list.

Return values

0 The specified form field could not be found

1 The specified form field was added to the calculation order list, or moved to the new
position if it was already in the list

SetFormFieldCaption
Form fields

Description

Sets the caption of the form field. This applies to buttons, checkboxes and radiobutton form fields
only.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldCaption(Index: Integer;
 NewCaption: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldCaption(
 Index As Long, NewCaption As String) As Long

 DLL

int DPLSetFormFieldCaption(int InstanceID, int Index,
 wchar_t * NewCaption);

Parameters

Index The index of the form field

NewCaption The new caption for the form field.

Return values

0 The form field could not be found or the parameters were invalid

1 The caption of the form field was set successfully

SetFormFieldCheckStyle
Form fields

Description

Sets the check style for checkbox fields or radio-button sub-fields.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldCheckStyle(Index, CheckStyle,
 Position: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldCheckStyle(
 Index As Long, CheckStyle As Long, Position As Long) As Long

 DLL

int DPLSetFormFieldCheckStyle(int InstanceID, int Index, int CheckStyle,
 int Position);

Parameters

Index The index of the form field to work with. The first form field has an index of 1.

CheckStyle 0 = Cross
1 = Check (Tick)
2 = Dot (Radio)
3 = XP check
4 = XP Radio
5 = Diamond
6 = Square
7 = Star

Position 0 = Left align
1 = Center
2 = Right align

Return values

0 One of the parameters was invalid

1 The check style was set successfully

SetFormFieldChildTitle
Form fields

Description

Sets the title of the specified form field. For form fields arranged in a hierarchy this function only
sets the last part of the field name. For example, a field with the name "Address.ZipCode" can be
changed to "Address.PostalCode".

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldChildTitle(Index: Integer;
 NewTitle: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldChildTitle(
 Index As Long, NewTitle As String) As Long

 DLL

int DPLSetFormFieldChildTitle(int InstanceID, int Index,
 wchar_t * NewTitle);

Parameters

Index The index of the form field to set the title of

NewTitle The new value for the last part of the title for the specified field.

Return values

0 The form field could not be found

1 The title of the specified form field was changed successfully

SetFormFieldChoiceSub
Form fields

Version history

This function was introduced in Quick PDF Library version 9.16.

Description

Sets the export and display values of an existing sub-field that is part of a choice form field. If the
display value is an empty string then it will be set to the same string as the export value.
The AddFormFieldChoiceSub function can be used to change a sub-field entry in an existing
choice form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldChoiceSub(Index,
 SubIndex: Integer; SubName, DisplayName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldChoiceSub(
 Index As Long, SubIndex As Long, SubName As String,
 DisplayName As String) As Long

 DLL

int DPLSetFormFieldChoiceSub(int InstanceID, int Index, int SubIndex,
 wchar_t * SubName, wchar_t * DisplayName);

Parameters

Index The index of the choice form field

SubIndex The index of the sub-field. The first sub-field has an index of 1.

SubName The export value of the new sub-field.

DisplayName The display value of the new sub-field.

Return values

0 The sub-field was not added. The specified form field may not have been a
choice form field.

1 The form field was updated successfully.

SetFormFieldChoiceType
Form fields

Version history

This function was introduced in Quick PDF Library version 7.24.

Description

Sets a choice form field to be a combo box or list box.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldChoiceType(Index,
 ChoiceType: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldChoiceType(
 Index As Long, ChoiceType As Long) As Long

 DLL

int DPLSetFormFieldChoiceType(int InstanceID, int Index, int ChoiceType);

Parameters

Index The index of the form field

ChoiceType 1 = Set the form field to be a scrollable list box
2 = Set the form field to be a drop-down combo box
3 = Set the form field to be a multiselect scrollable list box
4 = Set the form field to be a drop-down combo box with edit box

Return values

0 The field was not changed

1 The field was changed successfully

SetFormFieldColor
Form fields, Color

Description

Sets the color of the text in the form field. The values of the color parameters range from 0 to 1,
with 0 indicating 0% and 1 indicating 100% of the color.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldColor(Index: Integer; Red,
 Green, Blue: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldColor(Index As Long,
 Red As Double, Green As Double, Blue As Double) As Long

 DLL

int DPLSetFormFieldColor(int InstanceID, int Index, double Red,
 double Green, double Blue);

Parameters

Index The index of the form field to work with. The first form field has an index of 1.

Red The red component of the color

Green The green component of the color

Blue The blue component of the color

Return values

0 The form field could not be found

1 The form field text color was set successfully

SetFormFieldColorCMYK
Form fields, Color

Description

Sets the color of the text in the specified form field. Similar to the SetFormFieldBorderColor
function, but the color components are specified in the CMYK color space (Cyan, Magenta, Yellow,
Black). The values of the color parameters range from 0 to 1, with 0 indicating 0% and 1 indicating
100% of the color.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldColorCMYK(Index: Integer; C, M,
 Y, K: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldColorCMYK(
 Index As Long, C As Double, M As Double, Y As Double,
 K As Double) As Long

 DLL

int DPLSetFormFieldColorCMYK(int InstanceID, int Index, double C,
 double M, double Y, double K);

Parameters

Index The index of the form field

C The cyan component of the color

M The magenta component of the color

Y The yellow component of the color

K The black component of the color

Return values

0 The form field could not be found

1 The text color of the specified form field was set successfully

SetFormFieldColorSep
Form fields, Color

Description

Sets the color of the text in the specified form field. Similar to the SetFormFieldBorderColor
function, but a tint of a separation color added with the AddSeparationColor function is used. The
PDF specification does not support separation color spaces for form fields, so the results may not
always work, especially if the form field is later edited in Acrobat. This feature has been added for
situations where the form field will be flattened.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldColorSep(Index: Integer;
 ColorName: WideString; Tint: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldColorSep(
 Index As Long, ColorName As String, Tint As Double) As Long

 DLL

int DPLSetFormFieldColorSep(int InstanceID, int Index,
 wchar_t * ColorName, double Tint);

Parameters

Index The index of the form field

ColorName The name of the separation color that was used with the [f:AddSeparationColor]
function

Tint The amount of color to use. 0 indicates no color (white), 1 indicates maximum
color.

Return values

0 The form field could not be found, or the separation color name could not be
found

1 The text color of the specified form field was set successfully

SetFormFieldComb
Form fields

Description

Marks a form field as a comb field, where each character in the value occupies the same space in
the field. The field must be a test field, and the SetFormFieldMaxLen function must be called to
specify the number of characters in the field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldComb(Index,
 Comb: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldComb(Index As Long,
 Comb As Long) As Long

 DLL

int DPLSetFormFieldComb(int InstanceID, int Index, int Comb);

Parameters

Index The index of the form field

Comb 0 = Regular field
1 = Comb field

SetFormFieldDefaultValue
Form fields

Description

Sets the default value of the field. This is the value which is shown when the reset button is
pressed, if one is on the form.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldDefaultValue(Index: Integer;
 NewDefaultValue: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldDefaultValue(
 Index As Long, NewDefaultValue As String) As Long

 DLL

int DPLSetFormFieldDefaultValue(int InstanceID, int Index,
 wchar_t * NewDefaultValue);

Parameters

Index The index of the form field to change

NewDefaultValue The new default value for the form field. For multi-line text fields you can
use Chr(13) or Chr(13) + Chr(10) to force a line feed between lines.

Return values

0 The form field could not be found

1 The default value of the specified form field was set successfully

SetFormFieldDescription
Form fields

Description

Sets the description of the specified form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldDescription(Index: Integer;
 NewDescription: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldDescription(
 Index As Long, NewDescription As String) As Long

 DLL

int DPLSetFormFieldDescription(int InstanceID, int Index,
 wchar_t * NewDescription);

Parameters

Index The index of the form field to change

NewDescription The new description.

Return values

0 The form field could not be found

1 The specified form field's description was set successfully

SetFormFieldFlags
Form fields

Description

Sets the internal flags for the form field. This setting is for advanced purposes and most users will
not need to use it.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldFlags(Index,
 NewFlags: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldFlags(Index As Long,
 NewFlags As Long) As Long

 DLL

int DPLSetFormFieldFlags(int InstanceID, int Index, int NewFlags);

Parameters

Index The index of the form field

NewFlags The new value of the flags. Consult the PDF specification for further details.

Return values

0 Cannot find the form field

1 The flags were set successfully

SetFormFieldFont
Form fields

Description

Sets the font that the specified form field must use.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldFont(Index,
 FontIndex: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldFont(Index As Long,
 FontIndex As Long) As Long

 DLL

int DPLSetFormFieldFont(int InstanceID, int Index, int FontIndex);

Parameters

Index The index of the form field to work with. The first form field has an index of 1.

FontIndex The index of the font to use. The first font in the form has an index of 1. Use
GetFormFontCount to determine the number of fonts available in the form.

Return values

0 Bad font index or form field not found

1 Font was set successfully

SetFormFieldHighlightMode
Form fields

Description

Sets the highlight mode for the specified form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldHighlightMode(Index,
 NewMode: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldHighlightMode(
 Index As Long, NewMode As Long) As Long

 DLL

int DPLSetFormFieldHighlightMode(int InstanceID, int Index, int NewMode);

Parameters

Index The index of the form field

NewMode The highlighting mode:
0 = None
1 = Invert
2 = Outline
3 = Push

Return values

0 The form field could not be found or the parameters were invalid

1 The highlight mode of the form field was set successfully

SetFormFieldIcon
Form fields

Description

Sets the icon of a button form field. To create an icon: add a new page to the document, set the
size and draw images or text onto the page, and then capture the page using the CapturePage
function. For a "down" or "rollover" icon to be displayed correctly the form field's hightlight mode
must be set to "push", see the SetFormFieldHighlightMode function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldIcon(Index, IconType,
 CaptureID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldIcon(Index As Long,
 IconType As Long, CaptureID As Long) As Long

 DLL

int DPLSetFormFieldIcon(int InstanceID, int Index, int IconType,
 int CaptureID);

Parameters

Index The index of the form field

IconType The type of icon to assign:
0 = Normal icon
1 = Rollover icon
2 = Down icon

CaptureID The ID returned by the CapturePage function

Return values

0 The form field could not be found or the parameters were invalid

1 The specified icon of the form field was set successfully

SetFormFieldIconStyle
Form fields

Description

Sets the position, scaling and layout of a button form field's icon. These parameters apply to all the
icons assigned to a button (up, down and rollover).

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldIconStyle(Index, Placement,
 Scale, ScaleType, HorizontalShift, VerticalShift: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldIconStyle(
 Index As Long, Placement As Long, Scale As Long,
 ScaleType As Long, HorizontalShift As Long,
 VerticalShift As Long) As Long

 DLL

int DPLSetFormFieldIconStyle(int InstanceID, int Index, int Placement,
 int Scale, int ScaleType, int HorizontalShift,
 int VerticalShift);

Parameters

Index The index of the form field

Placement The icon placement:
0 = No icon; caption only
1 = No caption; icon only
2 = Caption below the icon
3 = Caption above the icon
4 = Caption to the right of the icon
5 = Caption to the left of the icon
6 = Caption overlaid directly on the icon

Scale The conditions under which to scale the icon:
0 = Always scale
1 = Only scale when the icon is bigger than the button
2 = Only scale when the icon is smaller than the button
3 = Never scale

ScaleType The type of scaling to use:
0 = Ignore aspect ratio
1 = Maintain aspect ratio

HorizontalShift The percentage of space placed to the left of the icon, for example:
0 = Align left
50 = Center horizontally
100 = Align right

VerticalShift The percentage of space placed beneath the icon, for example:
0 = Align bottom
50 = Center vertically
100 = Align top

Return values

0 The form field could not be found or the parameters were invalid

1 The icon style of the form field was set successfully

SetFormFieldMaxLen
Form fields

Description

Sets the maximum number of characters that will be accepted for the specified text form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldMaxLen(Index,
 NewMaxLen: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldMaxLen(
 Index As Long, NewMaxLen As Long) As Long

 DLL

int DPLSetFormFieldMaxLen(int InstanceID, int Index, int NewMaxLen);

Parameters

Index The index of the form field to work with. The first form field has an index of 1.

NewMaxLen The new maximum length to use for the form field

Return values

0 The form field index was invalid

1 The maximum length of the form field was set successfully

SetFormFieldNoExport
Form fields

Version history

This function was introduced in Quick PDF Library version 7.24.

Description

Sets the state of a field's NoExport flag.
The field will not be exported by a submit-form action if the NoExport flag is set.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldNoExport(Index,
 NoExport: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldNoExport(
 Index As Long, NoExport As Long) As Long

 DLL

int DPLSetFormFieldNoExport(int InstanceID, int Index, int NoExport);

Parameters

Index The index of the form field

NoExport 0 = Clear the field's NoExport flag
1 = Set the field's NoExport flag

Return values

0 Could not find the specified form field

1 The NoExport flag was set successfully

SetFormFieldOptional
Form fields, Content Streams and Optional Content Groups

Description

Adds a form field to an optional content group.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldOptional(Index,
 OptionalContentGroupID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldOptional(
 Index As Long, OptionalContentGroupID As Long) As Long

 DLL

int DPLSetFormFieldOptional(int InstanceID, int Index,
 int OptionalContentGroupID);

Parameters

Index The index of the form field

OptionalContentGroupID An ID returned by the NewOptionalContentGroup,
GetOptionalContentGroupID or
GetOptionalContentConfigOrderItemID functions

Return values

0 The OptionalContentGroupID or Index parameter was invalid

1 The field was added to the optional content group successfully

SetFormFieldPage
Form fields

Description

Moves the specified form field onto another page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldPage(Index,
 NewPage: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldPage(Index As Long,
 NewPage As Long) As Long

 DLL

int DPLSetFormFieldPage(int InstanceID, int Index, int NewPage);

Parameters

Index The index of the form field to move

NewPage The page number to move the form field to

Return values

0 Can't find the form field or the new destination page is invalid

1 Form field moved successfully

SetFormFieldPrintable
Form fields

Description

Set whether the specified form field should be printed or not.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldPrintable(Index,
 Printable: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldPrintable(
 Index As Long, Printable As Long) As Long

 DLL

int DPLSetFormFieldPrintable(int InstanceID, int Index, int Printable);

Parameters

Index The index of the form field to change

Printable 0 = Do not print
1 = Print

Return values

0 The specified form field could not be found

1 The printable flag of the specified form field was set successfully

SetFormFieldReadOnly
Form fields

Description

Sets the state of a field's ReadOnly flag.
The user cannot change the value of a form field if the ReadOnly flag is set.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldReadOnly(Index,
 ReadOnly: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldReadOnly(
 Index As Long, ReadOnly As Long) As Long

 DLL

int DPLSetFormFieldReadOnly(int InstanceID, int Index, int ReadOnly);

Parameters

Index The index of the form field

ReadOnly 0 = Clear the field's ReadOnly flag
1 = Set the field's ReadOnly flag

Return values

0 Could not find the specified form field

1 The ReadOnly flag was set successfully

SetFormFieldRequired
Form fields

Version history

This function was introduced in Quick PDF Library version 7.24.

Description

Sets the state of a field's is Required flag.
If this flag is set the field must have a value when the form is exported by a submit-form action.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldRequired(Index,
 Required: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldRequired(
 Index As Long, Required As Long) As Long

 DLL

int DPLSetFormFieldRequired(int InstanceID, int Index, int Required);

Parameters

Index The index of the form field

Required 0 = Clear the field's Required flag
1 = Set the field's Required flag

Return values

0 Could not find the specified form field

1 The Required flag was set successfully

SetFormFieldResetAction
Form fields

Version history

This function was introduced in Quick PDF Library version 9.15.

Description

Adds a reset action to a button form field. When actioned all formfields will be reset to their default
values.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldResetAction(Index: Integer;
 ActionType: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldResetAction(
 Index As Long, ActionType As String) As Long

 DLL

int DPLSetFormFieldResetAction(int InstanceID, int Index,
 wchar_t * ActionType);

Parameters

Index The index of the form field

ActionType The action type:E = An action to be performed when the cursor enters the
annotation's active areaX = An action to be performed when the cursor exits the
annotation's active areaD = An action to be performed when the mouse button is
pressed inside the annotation's active areaU = An action to be performed when
the mouse button is released inside the annotation's active areaFo = An action to
be performed when the annotation receives the input focusBl = An action to be
performed when the annotation loses the input focus (blurred)K = An action to
be performed when the user types a keystroke into a text field or combo box or
modifies the selection in a scrollable list box. This allows the keystroke to be
checked for validity and rejected or modified.F = An action to be performed
before the field is formatted to display its current value. This allows the field's
value to be modified before formatting.V = An action to be performed when the
field's value is changed. This allows the new value to be checked for validity.C =
An action to be performed in order to recalculate the value of this field when that
of another field changes

Return values

0 Could not set the field action

1 Success

SetFormFieldRichTextString
Form fields

Version history

This function was introduced in Quick PDF Library version 9.15.

Description

Sets the rich text (RV) or default style (DS) string of the specified form field using the given key.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldRichTextString(Index: Integer;
 Key, NewValue: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldRichTextString(
 Index As Long, Key As String, NewValue As String) As Long

 DLL

int DPLSetFormFieldRichTextString(int InstanceID, int Index,
 wchar_t * Key, wchar_t * NewValue);

Parameters

Index The index of the required form field. The first form field has an index of 1.

Key The Key used to set the required string
"RV" = sets the rich text string
"DS" = sets the default style string

NewValue The new value for the specified key. The required format of the input string is
defined in the PDF Specification under the section titled "Field Dictionaries".

Return values

0 Could not find the specified form field

1 The specified value of the form field was set successfully

SetFormFieldRotation
Form fields

Description

Sets the rotation of a form field anti-clockwise relative to the page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldRotation(Index,
 Angle: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldRotation(
 Index As Long, Angle As Long) As Long

 DLL

int DPLSetFormFieldRotation(int InstanceID, int Index, int Angle);

Parameters

Index The index of the form field to work with. The first form field has an index of 1.

Angle The angle to rotate the field by. Must be one of the following values: 0, 90, 180 or
270.

Return values

0 The form field could not be found or the specified angle was not valid

1 The rotation of the specified form field was set successfully

SetFormFieldSignatureImage
Image handling, Form fields, Security and Signatures

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Sets the visual appearance of a signature form field to use the specified image.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldSignatureImage(Index, ImageID,
 Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldSignatureImage(
 Index As Long, ImageID As Long, Options As Long) As Long

 DLL

int DPLSetFormFieldSignatureImage(int InstanceID, int Index, int ImageID,
 int Options);

Parameters

Index The index of the signature form field to work with. The first form field has an index
of 1.

ImageID A valid image ID as returned by the SelectedImage or GetImageID functions.

Options 0 = The image is stretched in both directions to fill the field size without any
rotation

Return values

0 The form field was not a signature field, the the Index parameter was out of range
or the ImageID parameter was invalid.

1 Success

SetFormFieldStandardFont
Fonts, Form fields

Description

Sets a form field to use a standard font. A standard font must be used in Acrobat 4 and earlier if
the form field contains a border or is rotated.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldStandardFont(Index,
 StandardFontID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldStandardFont(
 Index As Long, StandardFontID As Long) As Long

 DLL

int DPLSetFormFieldStandardFont(int InstanceID, int Index,
 int StandardFontID);

Parameters

Index The index of the form field

StandardFontID The ID of the font to add:
0 = Courier
1 = CourierBold
2 = CourierBoldOblique
3 = CourierOblique
4 = Helvetica
5 = HelveticaBold
6 = HelveticaBoldOblique
7 = HelveticaOblique
8 = TimesRoman
9 = TimesBold
10 = TimesItalic
11 = TimesBoldItalic
12 = Symbol
13 = ZapfDingbats

SetFormFieldSubmitAction
Form fields

Version history

This function was introduced in Quick PDF Library version 7.25.

Description

Adds a submit action to a button form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldSubmitAction(Index: Integer;
 ActionType, Link: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldSubmitAction(
 Index As Long, ActionType As String, Link As String) As Long

 DLL

int DPLSetFormFieldSubmitAction(int InstanceID, int Index,
 wchar_t * ActionType, wchar_t * Link);

Parameters

Index The index of the form field

ActionType The action type:
E = An action to be performed when the cursor enters the annotation's active
area
X = An action to be performed when the cursor exits the annotation's active area
D = An action to be performed when the mouse button is pressed inside the
annotation's active area
U = An action to be performed when the mouse button is released inside the
annotation's active area
Fo = An action to be performed when the annotation receives the input focus
Bl = An action to be performed when the annotation loses the input focus
(blurred)
K = An action to be performed when the user types a keystroke into a text field
or combo box or modifies the selection in a scrollable list box. This allows the
keystroke to be checked for validity and rejected or modified.
F = An action to be performed before the field is formatted to display its current
value. This allows the field's value to be modified before formatting.
V = An action to be performed when the field's value is changed. This allows the
new value to be checked for validity.
C = An action to be performed in order to recalculate the value of this field when
that of another field changes

Link The URL of the server script that will process the form submission.

Return values

0 Could not set the field action

1 Success

SetFormFieldSubmitActionEx
Form fields

Version history

This function was introduced in Quick PDF Library version 9.15.

Description

Adds a submit action to a button form field with a flags parameter for setting various submit
options. Please refer to section "Form Actions" of the official PDF Specifications.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldSubmitActionEx(Index: Integer;
 ActionType, Link: WideString; Flags: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldSubmitActionEx(
 Index As Long, ActionType As String, Link As String,
 Flags As Long) As Long

 DLL

int DPLSetFormFieldSubmitActionEx(int InstanceID, int Index,
 wchar_t * ActionType, wchar_t * Link, int Flags);

Parameters

Index The index of the form field

ActionType The action type:
E = An action to be performed when the cursor enters the annotation's active
area
X = An action to be performed when the cursor exits the annotation's active area
D = An action to be performed when the mouse button is pressed inside the
annotation's active area
U = An action to be performed when the mouse button is released inside the
annotation's active area
Fo = An action to be performed when the annotation receives the input focus
Bl = An action to be performed when the annotation loses the input focus
(blurred)
K = An action to be performed when the user types a keystroke into a text field
or combo box or modifies the selection in a scrollable list box. This allows the
keystroke to be checked for validity and rejected or modified.
F = An action to be performed before the field is formatted to display its current
value. This allows the field's value to be modified before formatting.
V = An action to be performed when the field's value is changed. This allows the
new value to be checked for validity.
C = An action to be performed in order to recalculate the value of this field when
that of another field changes

Link The URL of the server script that will process the form submission.

Flags Adobe defined flags value for the formfield submit action.

Return values

0 Could not set the field action

1 Success

SetFormFieldTabOrder
Form fields

Description

Sets the tab order of the specified form field. A position of 1 indicates that the form field is the first
field on the page.
If you use this function then you should call SetTabOrderMode with 'S' to set the tabbing mode to
Structure mode.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldTabOrder(Index,
 Order: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldTabOrder(
 Index As Long, Order As Long) As Long

 DLL

int DPLSetFormFieldTabOrder(int InstanceID, int Index, int Order);

Parameters

Index The index of the form field that should be moved to a new position in the tab order

Order The new position this form field should be in the tab order. The first position in the
tab order has a value of 1.

Return values

0 The form field could not be found or the new tab order was out of range

1 The tab order of the specified form field was updated successfully

SetFormFieldTextFlags
Form fields

Description

Sets various options for text form fields.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldTextFlags(Index, Multiline,
 Password, FileSelect, DoNotSpellCheck, DoNotScroll: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldTextFlags(
 Index As Long, Multiline As Long, Password As Long,
 FileSelect As Long, DoNotSpellCheck As Long,
 DoNotScroll As Long) As Long

 DLL

int DPLSetFormFieldTextFlags(int InstanceID, int Index, int Multiline,
 int Password, int FileSelect, int DoNotSpellCheck,
 int DoNotScroll);

Parameters

Index The index of the form field to work with. The first form field has an index
of 1.

Multiline 0 = Field's text is restricted to one line
1 = Field may contain multiple lines of text

Password 0 = The field is not a password field
1 = The field is a password, characters will be displayed as asterisks

FileSelect 0 = The field is not a file select field
1 = The contents of the file specified by the text entered in this field will
be submitted as the value of the form field

DoNotSpellCheck 0 = The field will be spell checked
1 = The field will not be spell checked

DoNotScroll 0 = Field can scroll
1 = Field is not allowed to scroll

Return values

0 The form field could not be found

1 The options for the text field were set successfully

SetFormFieldTextSize
Text, Form fields

Description

Sets the size of the text in the specified form field. A value of 0 indicates that the form field
autosizes the text to fit into the available space.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldTextSize(Index: Integer;
 NewTextSize: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldTextSize(
 Index As Long, NewTextSize As Double) As Long

 DLL

int DPLSetFormFieldTextSize(int InstanceID, int Index, double NewTextSize);

Parameters

Index The index of the form field to work with. The first form field has an index of 1.

NewTextSize The new size in points of the form field's font

Return values

0 The form field could not be found

1 The form field font size was set successfully

SetFormFieldTitle
Form fields

Version history

This function was introduced in Quick PDF Library version 10.12.

Description

Renames the title of a parent form field. No validation is performed so you should make sure the
title is unique.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldTitle(Index: Integer;
 NewTitle: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldTitle(Index As Long,
 NewTitle As String) As Long

 DLL

int DPLSetFormFieldTitle(int InstanceID, int Index, wchar_t * NewTitle);

Parameters

Index The index of the formfield

NewTitle The new title name for the formfield

Return values

0 The form field title cound not be changed

1 The field field title was changed successfully

SetFormFieldValue
Form fields

Description

Sets the initial value of a form field. The appearance stream for the form field is generated if
SetNeedAppearances(1) has been called.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldValue(Index: Integer;
 NewValue: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldValue(Index As Long,
 NewValue As String) As Long

 DLL

int DPLSetFormFieldValue(int InstanceID, int Index, wchar_t * NewValue);

Parameters

Index The index of the required form field. The first form field has an index of 1.

NewValue The new value of the form field. For multi-line text fields you can use Chr(13) or
Chr(13) + Chr(10) to force a line break.

Return values

0 Could not find the specified form field

1 The default value of the form field was set successfully

SetFormFieldValueByTitle
Form fields

Description

Sets the value of all the form fields with the specified title. The appearance streams for the form
fields are generated if SetNeedAppearances(1) has been called.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldValueByTitle(Title,
 NewValue: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldValueByTitle(
 Title As String, NewValue As String) As Long

 DLL

int DPLSetFormFieldValueByTitle(int InstanceID, wchar_t * Title,
 wchar_t * NewValue);

Parameters

Title The title of the form field to set.

NewValue The new value of the form field. For multi-line text fields you can use Chr(13) or
Chr(13) + Chr(10) to force a line feed between lines.

Return values

0 The form field could not be found

1 The value of the form field was set successfully

SetFormFieldVisible
Form fields

Description

Hides or shows the a form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetFormFieldVisible(Index,
 Visible: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetFormFieldVisible(
 Index As Long, Visible As Long) As Long

 DLL

int DPLSetFormFieldVisible(int InstanceID, int Index, int Visible);

Parameters

Index The index of the required form field. The first form field has an index of 1.

Visible 0 = Hide the form field
1 = Show the form field

Return values

0 Could not find the specified form field

1 The visiblity of the form field was set successfully

SetGDIPlusFileName
Rendering and printing

Description

Sets the path and filename of the GDI+ DLL (gdiplus.dll) used by the various rendering functions.
This can usually be left at the default, which means the DLL will most probably be stored in the
Windows/System folder, but on webservers, etc. it may be necessary to store the file in a different
location.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetGDIPlusFileName(
 DLLFileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetGDIPlusFileName(
 DLLFileName As String) As Long

 DLL

int DPLSetGDIPlusFileName(int InstanceID, wchar_t * DLLFileName);

Parameters

DLLFileName The path and file name of the GDI+ DLL, for example "c:\dlls\gdiplus.dll".

Return values

0 The specified file could not be found

1 The GDI+ DLL file name was set successfully

SetGDIPlusOptions
Rendering and printing

Description

Sets various options for the renderer when the GDI+ library is used.

Options 10, 11 and 12 will override options 2 and 3 if they are set to anything other than 0.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetGDIPlusOptions(OptionID,
 NewValue: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetGDIPlusOptions(
 OptionID As Long, NewValue As Long) As Long

 DLL

int DPLSetGDIPlusOptions(int InstanceID, int OptionID, int NewValue);

Parameters

OptionID 0 = Use of GDI+
1 = Text/vector graphics smoothing
2 = Interpolation
3 = Image smoothing
4 = Process null paths
5 = Mono threshold
6 = DLL piggyback
7 = DLL startup
8 = DLL suppress background thread
9 = Enhance thin lines
10 = GDIPlus SmoothingMode
11 = GDIPlus InterpolationMode
12 = GDIPlus PixelOffsetMode

NewValue For use of GDI+:
0 = Do not use GDI+
1 = Use GDI+ (default)

For text/vector graphics smoothing:
0 = No smoothing
1 = Smooth text and vector graphics (default)

For interpolation:
0 = Standard
1 = Accurate (default)

For images:
0 = No smoothing (default)
1 = Smoothing

For null paths:
0 = Ignore
1 = Process (default)

For the mono threshold:
0 = No thresholding (default)
1..255 = Threshold level

6 = DLL piggyback
7 = DLL startup
8 = DLL suppress background thread

For DLL piggyback:
0 = Do not allow
1 = Allow (reuse existing DLL instance)

For DLL startup (GdiplusStartup/GdiplusShutdown)
0 = Never call
1 = Don't call if piggybacking on existing DLL
2 = Always call

For DLL suppress background thread:
0 = No (do not suppress)
1 = Yes (suppress background thread)

For Enhance thin lines:
0 = Do nothing (default)
1 - 9 = Thicken lines smaller than 1 device unit to thickness specified

For GDIPlus SmoothingMode
0 = smDefault, 1 = smHighSpeed, 2= smHighQuality, 3 = smNone, 4 = smAntiAlias

For GDIPlus InterpolationMode
0 = imDefault, 1 = imLowQuality, 2 = imHighQuality,
3 = imBilinear, 4 = imBicubic, 5 = NearestNeighbor
6 = imHighQualityBilinear, 7 = imHighQualityBicubic

For GDIPlus PixelOffsetMode
0 = poDefault, 1 = poHighSpeed, 2 = poHighQuality
4 = poNone, 4 = poHalf

SetHTMLBoldFont
Text, HTML text

Description

Specifies the font to use when a or tag is encountered when using DrawHTMLText
or DrawHTMLTextBox.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetHTMLBoldFont(FontSet: WideString;
 FontID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetHTMLBoldFont(
 FontSet As String, FontID As Long) As Long

 DLL

int DPLSetHTMLBoldFont(int InstanceID, wchar_t * FontSet, int FontID);

Parameters

FontSet The name of the font set to use. For this version of the library it should always be
"Default".

FontID The ID of the font to use

Return values

0 The specified FontID is not a valid font

1 The font was set successfully

SetHTMLBoldItalicFont
Text, HTML text

Description

Specifies the font to use when both or and or <i> tags are encountered
when using DrawHTMLText or DrawHTMLTextBox.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetHTMLBoldItalicFont(FontSet: WideString;
 FontID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetHTMLBoldItalicFont(
 FontSet As String, FontID As Long) As Long

 DLL

int DPLSetHTMLBoldItalicFont(int InstanceID, wchar_t * FontSet,
 int FontID);

Parameters

FontSet The name of the font set to use. For this version of the library it should always be
"Default".

FontID The ID of the font to use

Return values

0 The specified FontID is not a valid font

1 The font was set successfully

SetHTMLItalicFont
Text, HTML text

Description

Specifies the font to use when an or <i> tag is encountered when using DrawHTMLText or
DrawHTMLTextBox.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetHTMLItalicFont(FontSet: WideString;
 FontID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetHTMLItalicFont(
 FontSet As String, FontID As Long) As Long

 DLL

int DPLSetHTMLItalicFont(int InstanceID, wchar_t * FontSet, int FontID);

Parameters

FontSet The name of the font set to use. For this version of the library it should always be
"Default".

FontID The ID of the font to use

Return values

0 The specified FontID is not a valid font

1 The font was set successfully

SetHTMLNormalFont
Text, HTML text

Description

Specifies the default font for text drawn using DrawHTMLText or DrawHTMLTextBox.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetHTMLNormalFont(FontSet: WideString;
 FontID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetHTMLNormalFont(
 FontSet As String, FontID As Long) As Long

 DLL

int DPLSetHTMLNormalFont(int InstanceID, wchar_t * FontSet, int FontID);

Parameters

FontSet The name of the font set to use. For this version of the library it should always be
"Default".

FontID The ID of the font to use

Return values

0 The specified FontID is not a valid font

1 The font was set successfully

SetHeaderCommentsFromString
Document properties

Version history

This function was introduced in Quick PDF Library version 9.16.

Description

Allows a binary string to be added between the file header and first objects. The string should start
with a % character to indicate that it is a comment.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetHeaderCommentsFromString(
 const Source: AnsiString): Integer;

 DLL

int DPLSetHeaderCommentsFromString(int InstanceID, char * Source);

Parameters

Source The new comments

Return values

0 The header comments could not be set

1 Success

SetHeaderCommentsFromVariant
Document properties

Version history

This function was introduced in Quick PDF Library version 9.16.

Description

Allows a binary string to be added between the file header and first objects. The string should start
with a % character to indicate that it is a comment.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetHeaderCommentsFromVariant(
 Source As Variant) As Long

Parameters

Source A byte array containing the new comments

Return values

0 The header comments could not be set

1 Success

SetImageAsMask
Image handling, Page layout

Description

This function must be called to prepare the image before it is used as a mask for another image.
The mask image must be a grayscale image, and be either 1-bit or 8-bit. Depending on your needs
you may want to call ReverseImage which will reverse the effects of the mask. A soft-mask is
just a normal image, so if you have an image setup as a stencil mask and no longer want it to be a
mask just change it to a soft mask image (MaskType = 2).

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetImageAsMask(MaskType: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetImageAsMask(
 MaskType As Long) As Long

 DLL

int DPLSetImageAsMask(int InstanceID, int MaskType);

Parameters

MaskType The type of mask to set this image as:
1 = Stencil mask (only 1-bit images)
2 = Soft mask (1-bit and 8-bit images)

SetImageMask
Image handling, Page layout

Description

Sets the mask for the selected image. This can be used to make parts of an image transparent
when it is drawn with the DrawImage or DrawScaledImage functions.
The color range specified will become transparent. This works best with losslessly compressed
images such as BMP or TIFF.
JPEG images use a lossy compression, so the image mask may cause halo effects.
The values of the color parameters range from 0 to 1, with 0 indicating 0% and 1 indicating 100%
of the color. For monochrome images only the red component will be used.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetImageMask(FromRed, FromGreen, FromBlue,
 ToRed, ToGreen, ToBlue: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetImageMask(FromRed As Double,
 FromGreen As Double, FromBlue As Double, ToRed As Double,
 ToGreen As Double, ToBlue As Double) As Long

 DLL

int DPLSetImageMask(int InstanceID, double FromRed, double FromGreen,
 double FromBlue, double ToRed, double ToGreen, double ToBlue);

Parameters

FromRed The red component of the starting color for the mask

FromGreen The green component of the starting color for the mask

FromBlue The blue component of the starting color for the mask

ToRed The red component of the ending color for the mask

ToGreen The green component of the ending color for the mask

ToBlue The blue component of the ending color for the mask

Return values

0 No image was selected

1 The image mask was set successfully

SetImageMaskCMYK
Image handling, Color, Page layout

Description

Sets the mask for the selected image. This can be used to make parts of an image transparent
when it is drawn with the DrawImage or DrawScaledImage functions. The color range specified
will become transparent. Use this function when the image you added is a CMYK image. Use the
SetImageMask function for RGB images. The values of the color parameters range from 0 to 1,
with 0 indicating 0% and 1 indicating 100% of the color.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetImageMaskCMYK(FromC, FromM, FromY,
 FromK, ToC, ToM, ToY, ToK: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetImageMaskCMYK(
 FromC As Double, FromM As Double, FromY As Double,
 FromK As Double, ToC As Double, ToM As Double, ToY As Double,
 ToK As Double) As Long

 DLL

int DPLSetImageMaskCMYK(int InstanceID, double FromC, double FromM,
 double FromY, double FromK, double ToC, double ToM,
 double ToY, double ToK);

Parameters

FromC The cyan component of the starting color for the mask

FromM The magenta component of the starting color for the mask

FromY The yellow component of the starting color for the mask

FromK The black component of the starting color for the mask

ToC The red component of the ending color for the mask

ToM The magenta component of the ending color for the mask

ToY The yellow component of the ending color for the mask

ToK The black component of the ending color for the mask

Return values

0 No image was selected

1 The image mask was set successfully

SetImageMaskFromImage
Image handling, Page layout

Description

Use this function to use another image as a transparency mask for the selected image. The mask
image must be a grayscale image. If it is not specifically prepared it will be added as a soft mask
which only works with Acrobat 5.0 and later. If it is specially prepared using the
SetImageAsMask function you can choose whether the image will be a stencil mask (which will
work with Acrobat 4.0 and later) or a soft mask (which will only work with Acrobat 5.0 and later).
Remember that soft masks and stencil masks treat opaque and transparent in an opposite fashion.
You may want to call ReverseImage on your mask image to ensure consistent results. For
compatibility with Acrobat 6.0 and later it is important to set the transparency group for the page
to ensure RGB colors in your image are not converted to CMYK yielding strange results. Use the
SetPageTransparencyGroup function for this. To avoid problems with Acrobat 4.0 you may want
to remove the /Decode array from the mask image. This can be achieved with the ReverseImage
function setting the Reset parameter to 0.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetImageMaskFromImage(
 ImageID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetImageMaskFromImage(
 ImageID As Long) As Long

 DLL

int DPLSetImageMaskFromImage(int InstanceID, int ImageID);

Parameters

ImageID The ID of the image to use as the mask

SetImageOptional
Image handling, Content Streams and Optional Content Groups

Description

Links the specified image to an optional content group. This allows the image to be selectively
shown in Acrobat 6 or later.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetImageOptional(
 OptionalContentGroupID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetImageOptional(
 OptionalContentGroupID As Long) As Long

 DLL

int DPLSetImageOptional(int InstanceID, int OptionalContentGroupID);

Parameters

OptionalContentGroupID An ID returned by the NewOptionalContentGroup,
GetOptionalContentGroupID or
GetOptionalContentConfigOrderItemID functions

SetImageResolution
Image handling

Version history

This function was introduced in Quick PDF Library version 7.22.

Description

Sets the horizontal and vertical resolution of the selected image as well as the resolution units.
These values are used by the FitImage function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetImageResolution(Horizontal, Vertical,
 Units: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetImageResolution(
 Horizontal As Long, Vertical As Long, Units As Long) As Long

 DLL

int DPLSetImageResolution(int InstanceID, int Horizontal, int Vertical,
 int Units);

Parameters

Horizontal The new horizontal resolution of the image

Vertical The new vertical resolution of the image

Units 0 = Unknown
1 = No units, values specify the aspect ratio
2 = Dots per inch (DPI)
3 = Dots per centimetre (DPCM)

Return values

0 No image was selected

1 The resolution of the image was set successfully

SetInformation
Document properties

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Set the properties of the selected document.
For the CreationDate and ModDate (modification date) properties, the format of the date should
be:
D:YYYYMMDDHHmmSSOHH'mm'
where
YYYY shall be the year
MM shall be the month (01-12)
DD shall be the day (01-31)
HH shall be the hour (00-23)
mm shall be the minute (00-59)
SS shall be the second (00-59)
O shall be the relationship of local time to Universal Time (UT) using a +, - or Z character
HH followed by APOSTROPHE (U+0027) (') shall be the absolute value of the offset from UT in
hours (00-23)
mm followed by an optional APOSTROPHE (U+0027) (') shall be the absolute value of the offset
from UT in minutes (00-59)

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetInformation(Key: Integer;
 NewValue: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetInformation(Key As Long,
 NewValue As String) As Long

 DLL

int DPLSetInformation(int InstanceID, int Key, wchar_t * NewValue);

Parameters

Key The property to set:
0 = PDF Version
1 = Author
2 = Title
3 = Subject
4 = Keywords
5 = Creator
6 = Producer
7 = CreationDate
8 = ModDate
9 = XMP dc:subject

NewValue The new value of the specified property.

Return values

0 The specified information could not be set. Use the LastErrorCode function to
determine the reason for failure.

1 The specified information was set successfully

SetJPEGQuality
Rendering and printing

Description

Sets the quality for any JPEG images produced by the library.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetJPEGQuality(Quality: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetJPEGQuality(
 Quality As Long) As Long

 DLL

int DPLSetJPEGQuality(int InstanceID, int Quality);

Parameters

Quality A number between 1 and 100 indicating the quality of the image. The higher the
value, the better the image quality, but the larger the file size. The lower the value,
the smaller the resulting file size, but at the expense of picture quality.

SetJavaScriptMode
Document properties, JavaScript

Description

This function allows you to control the way JavaScript is stored in the document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetJavaScriptMode(JSMode: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetJavaScriptMode(
 JSMode As Long) As Long

 DLL

int DPLSetJavaScriptMode(int InstanceID, int JSMode);

Parameters

JSMode 1 = Store JavaScript in a stream
2 = Store JavaScript in a compressed stream
Anything else = Store JavaScript as a string (default)

SetKerning
Text, Fonts

Description

Sets the amount of kerning for the specified character pair.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetKerning(CharPair: WideString;
 Adjustment: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetKerning(CharPair As String,
 Adjustment As Long) As Long

 DLL

int DPLSetKerning(int InstanceID, wchar_t * CharPair, int Adjustment);

Parameters

CharPair A two-character string containing the characters making the kerning pair, for
example "AW"

Adjustment The amount to reduce the space between the kerning pair by. This is the same
value as shown in graphics programs such as Adobe Illustrator. A value of 1000
is the same as the height of the text.

Return values

0 The kerning could not be set. Either the CharPair was not 2 characters in length,
or a font has not been selected.

1 The kerning for the specified pair of characters was set successfully

SetLineCap
Vector graphics

Description

Sets the line cap style for subsequently drawn lines.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetLineCap(LineCap: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetLineCap(
 LineCap As Long) As Long

 DLL

int DPLSetLineCap(int InstanceID, int LineCap);

Parameters

LineCap The line cap style to use:
0 = Butt
1 = Round
2 = Projecting square cap

Return values

0 The LineCap parameter was not valid

1 The line cap style was set successfully

SetLineColor
Vector graphics, Color

Description

Sets the outline color for any subsequently drawn graphics. The values of the color parameters
range from 0 to 1, with 0 indicating 0% and 1 indicating 100% of the color.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetLineColor(Red, Green,
 Blue: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetLineColor(Red As Double,
 Green As Double, Blue As Double) As Long

 DLL

int DPLSetLineColor(int InstanceID, double Red, double Green, double Blue);

Parameters

Red The red component of the color

Green The green component of the color

Blue The blue component of the color

SetLineColorCMYK
Vector graphics, Color

Description

Sets the outline color of subsequently drawn graphics. Similar to the SetLineColor function, but
the color components are specified in CMYK mode (Cyan, Magenta, Yellow and Black). The values
of the color parameters range from 0 to 1, with 0 indicating 0% and 1 indicating 100% of the color.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetLineColorCMYK(C, M, Y,
 K: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetLineColorCMYK(C As Double,
 M As Double, Y As Double, K As Double) As Long

 DLL

int DPLSetLineColorCMYK(int InstanceID, double C, double M, double Y,
 double K);

Parameters

C The cyan component of the color

M The magenta component of the color

Y The yellow component of the color

K The black component of the color

SetLineColorSep
Vector graphics, Color

Description

Sets the outline color of subsequently drawn graphics. Similar to the SetFillColor function, but a
tint of a separation color added with the AddSeparationColor function is used.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetLineColorSep(ColorName: WideString;
 Tint: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetLineColorSep(
 ColorName As String, Tint As Double) As Long

 DLL

int DPLSetLineColorSep(int InstanceID, wchar_t * ColorName, double Tint);

Parameters

ColorName The name of the separation color that was used with the AddSeparationColor
function

Tint The amount of color to use. 0 indicates no color (white), 1 indicates maximum
color.

Return values

0 The separation color name could not be found

1 The line color was set successfully

SetLineDash
Vector graphics

Description

Sets the outline dash pattern for subsequently drawn graphics.
Calling this function with either parameter set to zero will return to a solid line style for subseqently
drawn graphics.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetLineDash(DashOn,
 DashOff: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetLineDash(DashOn As Double,
 DashOff As Double) As Long

 DLL

int DPLSetLineDash(int InstanceID, double DashOn, double DashOff);

Parameters

DashOn The width of the dashes

DashOff The width of the space between the dashes

SetLineDashEx
Vector graphics

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Sets the outline dash pattern for subsequently drawn graphics. The dash pattern can be specified
with a series of numeric values as per the PDF specification.
Calling this function with an empty string for the DashValues parameter will return to a solid line
style for subseqently drawn graphics.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetLineDashEx(
 DashValues: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetLineDashEx(
 DashValues As String) As Long

 DLL

int DPLSetLineDashEx(int InstanceID, wchar_t * DashValues);

Parameters

DashValues The dash pattern to use.

Return values

0 The value of the DashValues parameter was not valid. It should be a list of
numeric values separated by spaces. For example "1 1 5 1".

1 The dash pattern was set successfully.

SetLineJoin
Vector graphics

Description

Sets the line join style for subsequently drawn graphics.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetLineJoin(LineJoin: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetLineJoin(
 LineJoin As Long) As Long

 DLL

int DPLSetLineJoin(int InstanceID, int LineJoin);

Parameters

LineJoin The line join style to use:
0 = Miter join
1 = Round join
2 = Bevel join

Return values

0 The LineJoin parameter was invalid

1 The line join style was set successfully

SetLineShader
Vector graphics, Path definition and drawing, Color

Version history

This function was introduced in Quick PDF Library version 7.11.

Description

Sets the outline color to the specified shader for subsequently drawn graphics.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetLineShader(
 ShaderName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetLineShader(
 ShaderName As String) As Long

 DLL

int DPLSetLineShader(int InstanceID, wchar_t * ShaderName);

Parameters

ShaderName The shader name that was used when the shader was created.

Return values

0 The shader could not be found

1 The shader outline was setup correctly

SetLineWidth
Vector graphics

Description

Sets the outline width for any subsequently drawn shapes.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetLineWidth(LineWidth: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetLineWidth(
 LineWidth As Double) As Long

 DLL

int DPLSetLineWidth(int InstanceID, double LineWidth);

Parameters

LineWidth The width to use

SetMarkupAnnotStyle
Color, Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 7.25.

Description

Sets the background color and transparency of a text markup annotation.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetMarkupAnnotStyle(Index: Integer; Red,
 Green, Blue, Transparency: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetMarkupAnnotStyle(
 Index As Long, Red As Double, Green As Double, Blue As Double,
 Transparency As Double) As Long

 DLL

int DPLSetMarkupAnnotStyle(int InstanceID, int Index, double Red,
 double Green, double Blue, double Transparency);

Parameters

Index The index of the annotation. The first annotation on the page has an index of
1.

Red The red component of the color

Green The green component of the color

Blue The blue component of the color

Transparency The amount of transparency to apply
0 = No transparency
50 = 50% transparency
100 = Invisible

SetMeasureDictBoundsCount
Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Sets the number of items in the Bounds array of a measurement dictionary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetMeasureDictBoundsCount(MeasureDictID,
 NewCount: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetMeasureDictBoundsCount(
 MeasureDictID As Long, NewCount As Long) As Long

 DLL

int DPLSetMeasureDictBoundsCount(int InstanceID, int MeasureDictID,
 int NewCount);

Parameters

MeasureDictID A value returned from the GetImageMeasureDict function

NewCount The new number of items in the list. Must be a multiple of 2.

Return values

0 The MeasureDictID parameter was incorrect

1 Success

SetMeasureDictBoundsItem
Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Sets the value of an item in the Bounds array of a measurement dictionary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetMeasureDictBoundsItem(MeasureDictID,
 ItemIndex: Integer; NewValue: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetMeasureDictBoundsItem(
 MeasureDictID As Long, ItemIndex As Long,
 NewValue As Double) As Long

 DLL

int DPLSetMeasureDictBoundsItem(int InstanceID, int MeasureDictID,
 int ItemIndex, double NewValue);

Parameters

MeasureDictID A value returned from the GetImageMeasureDict function

ItemIndex The index of the item to set. The first item has an index of 1.

NewValue The new value of the item.

Return values

0 The MeasureDictID parameter was incorrect or the ItemIndex parameter was
out of range

1 Success

SetMeasureDictCoordinateSystem
Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Sets the coordinate system of a measurement dictionary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetMeasureDictCoordinateSystem(
 MeasureDictID, CoordinateSystemID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetMeasureDictCoordinateSystem(
 MeasureDictID As Long, CoordinateSystemID As Long) As Long

 DLL

int DPLSetMeasureDictCoordinateSystem(int InstanceID, int MeasureDictID,
 int CoordinateSystemID);

Parameters

MeasureDictID A value returned from the GetImageMeasureDict function

CoordinateSystemID 1 = Rectilinear coordinate system (RL)
2 = Geospatial coordinate system (GEO)

Return values

0 The MeasureDictID parameter was incorrect or the
CoordinateSystemID parameter was out of range

1 Success

SetMeasureDictGPTSCount
Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Sets the number of items in the GPTS array of a measurement dictionary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetMeasureDictGPTSCount(MeasureDictID,
 NewCount: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetMeasureDictGPTSCount(
 MeasureDictID As Long, NewCount As Long) As Long

 DLL

int DPLSetMeasureDictGPTSCount(int InstanceID, int MeasureDictID,
 int NewCount);

Parameters

MeasureDictID A value returned from the GetImageMeasureDict function

NewCount The new number of items in the list. Must be a multiple of 2.

Return values

0 The MeasureDictID parameter was incorrect

1 Success

SetMeasureDictGPTSItem
Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Sets the value of an item in the GPTS array of a measurement dictionary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetMeasureDictGPTSItem(MeasureDictID,
 ItemIndex: Integer; NewValue: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetMeasureDictGPTSItem(
 MeasureDictID As Long, ItemIndex As Long,
 NewValue As Double) As Long

 DLL

int DPLSetMeasureDictGPTSItem(int InstanceID, int MeasureDictID,
 int ItemIndex, double NewValue);

Parameters

MeasureDictID A value returned from the GetImageMeasureDict function

ItemIndex The index of the item to set. The first item has an index of 1.

NewValue The new value of the item.

Return values

0 The MeasureDictID parameter was incorrect or the ItemIndex parameter was
out of range

1 Success

SetMeasureDictLPTSCount
Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Sets the number of items in the LPTS array of a measurement dictionary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetMeasureDictLPTSCount(MeasureDictID,
 NewCount: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetMeasureDictLPTSCount(
 MeasureDictID As Long, NewCount As Long) As Long

 DLL

int DPLSetMeasureDictLPTSCount(int InstanceID, int MeasureDictID,
 int NewCount);

Parameters

MeasureDictID A value returned from the GetImageMeasureDict function

NewCount The new number of items in the list. Must be a multiple of 2.

Return values

0 The MeasureDictID parameter was incorrect

1 Success

SetMeasureDictLPTSItem
Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Sets the value of an item in the LPTS array of a measurement dictionary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetMeasureDictLPTSItem(MeasureDictID,
 ItemIndex: Integer; NewValue: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetMeasureDictLPTSItem(
 MeasureDictID As Long, ItemIndex As Long,
 NewValue As Double) As Long

 DLL

int DPLSetMeasureDictLPTSItem(int InstanceID, int MeasureDictID,
 int ItemIndex, double NewValue);

Parameters

MeasureDictID A value returned from the GetImageMeasureDict function

ItemIndex The index of the item to set. The first item has an index of 1.

NewValue The new value of the item.

Return values

0 The MeasureDictID parameter was incorrect or the ItemIndex parameter was
out of range

1 Success

SetMeasureDictPDU
Measurement and coordinate units

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Sets the page display units of a measurement dictionary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetMeasureDictPDU(MeasureDictID,
 LinearUnit, AreaUnit, AngularUnit: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetMeasureDictPDU(
 MeasureDictID As Long, LinearUnit As Long, AreaUnit As Long,
 AngularUnit As Long) As Long

 DLL

int DPLSetMeasureDictPDU(int InstanceID, int MeasureDictID,
 int LinearUnit, int AreaUnit, int AngularUnit);

Parameters

MeasureDictID A value returned from the GetImageMeasureDict function

LinearUnit 1 = M (a meter)
2 = KM (a kilometer)
3 = FT (an international foot)
4 = USFT (a U.S. Survey foot)
5 = MI (an international mile)
6 = NM (an international nautical mile)

AreaUnit 1 = SQM (a square meter)
2 = HA (a hectare = 10,000 square meters)
3 = SQKM (a square kilometer)
4 = SQFT (a square foot)
5 = A (an acre)
6 = SQMI (a square mile)

AngularUnit 1 = DEG (a degree)
2 = GRD (a grad = 0.9 degrees)

Return values

0 The MeasureDictID parameter was incorrect or one of the other parameters
was out of range.

1 Success

SetMeasurementUnits
Measurement and coordinate units

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Set the units to use for all measurements given to and returned from the library.
Default user space is exactly 1/72 inches per unit, which is approximately the same as a "point", a
unit used in the printing industry. 25.4 millimetres is one inch.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetMeasurementUnits(
 MeasurementUnits: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetMeasurementUnits(
 MeasurementUnits As Long) As Long

 DLL

int DPLSetMeasurementUnits(int InstanceID, int MeasurementUnits);

Parameters

MeasurementUnits The units to use:
0 = Default user space
1 = Millimetres
2 = Inches
Anything else = Default user space

SetNeedAppearances
Form fields

Description

Sets the value of the document's "NeedAppearances" key. Setting this to 1 (True) will instruct the
PDF viewer to create the appearances for the form fields when the document is loaded. The
document must have at least one form field for this function to have any effect.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetNeedAppearances(
 NewValue: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetNeedAppearances(
 NewValue As Long) As Long

 DLL

int DPLSetNeedAppearances(int InstanceID, int NewValue);

Parameters

NewValue 0 = Set NeedAppearances to False
1 = Set NeedAppearances to True

Return values

0 The document does not have any form fields

1 The NeedAppearances flag was set successfully

SetObjectFromString
Miscellaneous functions

Version history

This function was renamed in Quick PDF Library version 8.11.
The function name in earlier versions was SetObjectSource.

Description

Sets the raw PDF object data for the specified object number. This is for advanced use only.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetObjectFromString(ObjectNumber: Integer;
 const Source: AnsiString): Integer;

 DLL

int DPLSetObjectFromString(int InstanceID, int ObjectNumber,
 char * Source);

Parameters

ObjectNumber The number of the object to update. The first object is numbered 1 and the
last object has an object number equal to the result of the GetObjectCount
function.

Source The raw PDF object data to associate with the specified object.

Return values

0 The ObjectNumber parameter was out of bounds.

1 The specified object was updated successfully.

SetObjectFromVariant
Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Sets the raw PDF object data for the specified object number from a variant byte array. This is for
advanced use only.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetObjectFromVariant(
 ObjectNumber As Long, NewValue As Variant) As Long

Parameters

ObjectNumber The number of the object to update. The first object is numbered 1 and the
last object has an object number equal to the result of the GetObjectCount
function.

NewValue The raw PDF object data to associate with the specified object.

Return values

0 The ObjectNumber parameter was out of bounds.

1 The specified object was updated successfully.

SetOpenActionDestination
Document properties

Description

This function allows the opening page and zoom factor to be set for the selected document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetOpenActionDestination(OpenPage,
 Zoom: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetOpenActionDestination(
 OpenPage As Long, Zoom As Long) As Long

 DLL

int DPLSetOpenActionDestination(int InstanceID, int OpenPage, int Zoom);

Parameters

OpenPage The page number to jump to when the document is opened

Zoom The zoom percentage to use when the document is opened:
0..1600 = percentage zoom
-1 = Fit in window
-2 = Fit width

Return values

0 The open action could not be set

1 The open action was set successfully

SetOpenActionDestinationFull
Document properties

Version history

This function was introduced in Quick PDF Library version 7.12.

Description

This function allows the opening page and various sizing/positioning values to be set for the selected document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetOpenActionDestinationFull(OpenPage,
 Zoom, DestType: Integer; Left, Top, Right, Bottom: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetOpenActionDestinationFull(
 OpenPage As Long, Zoom As Long, DestType As Long,
 Left As Double, Top As Double, Right As Double,
 Bottom As Double) As Long

 DLL

int DPLSetOpenActionDestinationFull(int InstanceID, int OpenPage,
 int Zoom, int DestType, double Left, double Top, double Right,
 double Bottom);

Parameters

OpenPage The page number to jump to when the document is opened

Zoom The zoom percentage to use when the document is opened, valid values from 0 to 6400. Only
used for DestType = 1, should be set to 0 for other DestTypes.

DestType 1 = "XYZ" - the target page is positioned at the point specified by the Left and Top
parameters. The Zoom parameter specifies the zoom percentage.
2 = "Fit" - the entire page is zoomed to fit the window. None of the other parameters are
used and should be set to zero.
3 = "FitH" - the page is zoomed so that the entire width of the page is visible. The height of
the page may be greater or less than the height of the window. The page is positioned at the
vertical position specified by the Top parameter.
4 = "FitV" - the page is zoomed so that the entire height of the page can be seen. The width
of the page may be greater or less than the width of the window. The page is positioned at
the horizontal position specified by the Left parameter.
5 = "FitR" - the page is zoomed so that a certain rectangle on the page is visible. The Left,
Top, Right and Bottom parameters define the rectangular area on the page.
6 = "FitB" - the page is zoomed so that it's bounding box is visible.
7 = "FitBH" - the page is positioned vertically at the position specified by the Top parameter.
The page is zoomed so that the entire width of the page's bounding box is visible.
8 = "FitBV" - the page is positioned at the horizontal position specified by the Left parameter.
The page is zoomed just enough to fit the entire height of the bounding box into the window.

Left The horizontal position used by DestType = 1, 4, 5 and 8

Top The vertical position used by DestType = 1, 3, 5 and 7

Right The horizontal position of the righthand edge of the rectangle. Used by DestType = 5

Bottom The horizontal position of the bottom of the rectangle. Used by DestType = 5

Return values

0 The open action destination could not be set. The usually indicates that the Zoom or DestType
parameters are out of range.

1 The open action destination was set successfully.

SetOpenActionJavaScript
Document properties, JavaScript

Description

Use this function to run a block of JavaScript as the document is opened.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetOpenActionJavaScript(
 JavaScript: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetOpenActionJavaScript(
 JavaScript As String) As Long

 DLL

int DPLSetOpenActionJavaScript(int InstanceID, wchar_t * JavaScript);

Parameters

JavaScript The JavaScript to use for this action.

Return values

0 The JavaScript could not be added

1 The JavaScript was added successfully

SetOpenActionMenu
Document properties

Description

Specifies an Acrobat menu item to execute when the document is first loaded.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetOpenActionMenu(
 MenuItem: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetOpenActionMenu(
 MenuItem As String) As Long

 DLL

int DPLSetOpenActionMenu(int InstanceID, wchar_t * MenuItem);

Parameters

MenuItem The menu item which should be executed, for example "print"

Return values

0 The open action could not be set

1 The open action was set successfully

SetOptionalContentConfigLocked
Content Streams and Optional Content Groups

Version history

This function was introduced in Quick PDF Library version 8.15.

Description

This function is used to lock an optional content group as defined by the specified optional content
configuration dictionary.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetOptionalContentConfigLocked(
 OptionalContentConfigID, OptionalContentGroupID,
 NewLocked: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetOptionalContentConfigLocked(
 OptionalContentConfigID As Long,
 OptionalContentGroupID As Long, NewLocked As Long) As Long

 DLL

int DPLSetOptionalContentConfigLocked(int InstanceID,
 int OptionalContentConfigID, int OptionalContentGroupID,
 int NewLocked);

Parameters

OptionalContentConfigID The first default optional content configuration dictionary has an
ID of 1. Higher numbers are used for other optional content
configuration dictionaries.

OptionalContentGroupID An ID returned by the NewOptionalContentGroup,
GetOptionalContentGroupID or
GetOptionalContentConfigOrderItemID functions

NewLocked 0 = Unlocked
1 = Locked

Return values

0 The optional content group could not be locked

1 Success

SetOptionalContentConfigState
Content Streams and Optional Content Groups

Version history

This function was introduced in Quick PDF Library version 8.12.

Description

This function is used to set the state of an optional content group as defined by the specified
optional content configuration dictionary.
All optional content configuration dictionaries have a base state (either ON, OFF or Unchanged) and
two membership arrays called /ON and /OFF.
A reference to the optional content group is added to the appropriate /ON or /OFF array (or
removed from either array) depending on the value of the base state.
A particular optional content group can only be set to Unchanged if the base state of the optional
content configuration dictionary is Unchanged.
The base state of the default optional content configuration dictionary (accessed by setting
OptionalContentConfigID to 1) is always ON, so optional content groups in this configuration
dictionary can only be set to ON or OFF.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetOptionalContentConfigState(
 OptionalContentConfigID, OptionalContentGroupID,
 NewState: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetOptionalContentConfigState(
 OptionalContentConfigID As Long,
 OptionalContentGroupID As Long, NewState As Long) As Long

 DLL

int DPLSetOptionalContentConfigState(int InstanceID,
 int OptionalContentConfigID, int OptionalContentGroupID,
 int NewState);

Parameters

OptionalContentConfigID The first default optional content configuration dictionary has an
ID of 1. Higher numbers are used for other optional content
configuration dictionaries.

OptionalContentGroupID An ID returned by the NewOptionalContentGroup,
GetOptionalContentGroupID or
GetOptionalContentConfigOrderItemID functions

NewState Specifies the state that the optional content group in this
configuration dictionary should be set to:
1 = Set to ON
2 = Set to OFF
3 = Set to unchanged (if possible)

Return values

0 The state could not be set

1 The state was set successfully

SetOptionalContentGroupName
Content Streams and Optional Content Groups

Version history

This function was introduced in Quick PDF Library version 9.12.

Description

Sets the name of the specified optional content group.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetOptionalContentGroupName(
 OptionalContentGroupID: Integer; NewGroupName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetOptionalContentGroupName(
 OptionalContentGroupID As Long, NewGroupName As String) As Long

 DLL

int DPLSetOptionalContentGroupName(int InstanceID,
 int OptionalContentGroupID, wchar_t * NewGroupName);

Parameters

OptionalContentGroupID An ID returned by the NewOptionalContentGroup,
GetOptionalContentGroupID or
GetOptionalContentConfigOrderItemID functions

NewGroupName The new name for the OCG

Return values

0 The name could not be set

1 The OCG's name was set successfully

SetOptionalContentGroupPrintable
Content Streams and Optional Content Groups

Version history

This function was introduced in Quick PDF Library version 7.12.

Description

This function allows an optional content group to be marked as visible or invisible when the
document is printed.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetOptionalContentGroupPrintable(
 OptionalContentGroupID, Printable: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetOptionalContentGroupPrintable(
 OptionalContentGroupID As Long, Printable As Long) As Long

 DLL

int DPLSetOptionalContentGroupPrintable(int InstanceID,
 int OptionalContentGroupID, int Printable);

Parameters

OptionalContentGroupID An ID returned by the NewOptionalContentGroup,
GetOptionalContentGroupID or
GetOptionalContentConfigOrderItemID functions

Printable 0 = Not printed
1 = Printed

SetOptionalContentGroupVisible
Content Streams and Optional Content Groups

Description

This function allows an optional content group to be marked as visible or invisible when the
document is opened.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetOptionalContentGroupVisible(
 OptionalContentGroupID, Visible: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetOptionalContentGroupVisible(
 OptionalContentGroupID As Long, Visible As Long) As Long

 DLL

int DPLSetOptionalContentGroupVisible(int InstanceID,
 int OptionalContentGroupID, int Visible);

Parameters

OptionalContentGroupID An ID returned by the NewOptionalContentGroup,
GetOptionalContentGroupID or
GetOptionalContentConfigOrderItemID functions

Visible 0 = Not visible
1 = Visible

Return values

Non-zero An ID that can be used as the OptionalContentGroupID parameter
with the other optional content group functions

SetOrigin
Measurement and coordinate units

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Sets the origin for all subsequent drawing operations.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetOrigin(Origin: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetOrigin(Origin As Long) As Long

 DLL

int DPLSetOrigin(int InstanceID, int Origin);

Parameters

Origin Specifies which page corner to use for the origin:
0 = Bottom left (default)
1 = Top left
2 = Top right
3 = Bottom right
Anything else = Bottom left

SetOutlineColor
Color, Outlines

Description

Sets the color of an outline item (bookmark). The values of the color parameters range from 0 to
1, with 0 indicating 0% and 1 indicating 100% of the color.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetOutlineColor(OutlineID: Integer; Red,
 Green, Blue: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetOutlineColor(
 OutlineID As Long, Red As Double, Green As Double,
 Blue As Double) As Long

 DLL

int DPLSetOutlineColor(int InstanceID, int OutlineID, double Red,
 double Green, double Blue);

Parameters

OutlineID The ID of the outline as returned by the NewOutline function. Alternatively, use
the GetOutlineID function to get a valid outline ID.

Red The red component of the color

Green The green component of the color

Blue The blue component of the color

Return values

0 The Outline ID provided was invalid

1 The color of the outline item was set successfully

SetOutlineDestination
Outlines

Description

Sets the destination that an outline item (bookmark) points to.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetOutlineDestination(OutlineID,
 DestPage: Integer; DestPosition: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetOutlineDestination(
 OutlineID As Long, DestPage As Long,
 DestPosition As Double) As Long

 DLL

int DPLSetOutlineDestination(int InstanceID, int OutlineID, int DestPage,
 double DestPosition);

Parameters

OutlineID The ID of the outline as returned by the NewOutline function. Alternatively,
use the GetOutlineID function to get a valid outline ID.

DestPage The page number that this outline item links to

DestPosition The vertical position of the page that this outline item links to. Jumping to the
bottom of the page will result in the following page being shown. If possible link
to the top of the page.

Return values

0 The Outline ID provided was invalid

1 The destination of the outline item was set successfully

SetOutlineDestinationFull
Outlines

Version history

This function was introduced in Quick PDF Library version 7.12.

Description

Sets the destination of an outline item (bookmark) to a specific postion and zoom percentage.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetOutlineDestinationFull(OutlineID,
 DestPage, Zoom, DestType: Integer; Left, Top, Right,
 Bottom: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetOutlineDestinationFull(
 OutlineID As Long, DestPage As Long, Zoom As Long,
 DestType As Long, Left As Double, Top As Double,
 Right As Double, Bottom As Double) As Long

 DLL

int DPLSetOutlineDestinationFull(int InstanceID, int OutlineID,
 int DestPage, int Zoom, int DestType, double Left, double Top,
 double Right, double Bottom);

Parameters

OutlineID The ID of the outline as returned by the NewOutline function. Alternatively, use the
GetOutlineID function to get a valid outline ID.

DestPage The page number that this outline item links to

Zoom The zoom percentage to use when the outline destination is opened, valid values from 0 to 6400.
Only used for DestType = 1, should be set to 0 for other DestTypes.

DestType 1 = "XYZ" - the target page is positioned at the point specified by the Left and Top parameters.
The Zoom parameter specifies the zoom percentage.
2 = "Fit" - the entire page is zoomed to fit the window. None of the other parameters are used
and should be set to zero.
3 = "FitH" - the page is zoomed so that the entire width of the page is visible. The height of the
page may be greater or less than the height of the window. The page is positioned at the vertical
position specified by the Top parameter.
4 = "FitV" - the page is zoomed so that the entire height of the page can be seen. The width of
the page may be greater or less than the width of the window. The page is positioned at the
horizontal position specified by the Left parameter.
5 = "FitR" - the page is zoomed so that a certain rectangle on the page is visible. The Left, Top,
Right and Bottom parameters define the rectangular area on the page.
6 = "FitB" - the page is zoomed so that it's bounding box is visible.
7 = "FitBH" - the page is positioned vertically at the position specified by the Top parameter. The
page is zoomed so that the entire width of the page's bounding box is visible.
8 = "FitBV" - the page is positioned at the horizontal position specified by the Left parameter.
The page is zoomed just enough to fit the entire height of the bounding box into the window.

Left The horizontal position used by DestType = 1, 4, 5 and 8

Top The vertical position used by DestType = 1, 3, 5 and 7

Right The horizontal position of the righthand edge of the rectangle. Used by DestType = 5

Bottom The horizontal position of the bottom of the rectangle. Used by DestType = 5

Return values

0 The outline destination could not be set. The usually indicates that the Zoom or DestType
parameters are out of range or the OutlineID is invalid.

1 The outline destination was set successfully

SetOutlineDestinationZoom
Outlines

Description

Sets the destination of an outline item (bookmark) to a specific postion on a page, and sets the
zoom percentage of the document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetOutlineDestinationZoom(OutlineID,
 DestPage: Integer; DestPosition: Double; Zoom: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetOutlineDestinationZoom(
 OutlineID As Long, DestPage As Long, DestPosition As Double,
 Zoom As Long) As Long

 DLL

int DPLSetOutlineDestinationZoom(int InstanceID, int OutlineID,
 int DestPage, double DestPosition, int Zoom);

Parameters

OutlineID The ID of the outline as returned by the NewOutline function. Alternatively,
use the GetOutlineID function to get a valid outline ID.

DestPage The page number that this outline should link to

DestPosition The vertical position on the page that the outline should link to. Specifying a
point at the bottom of the page will result in the next page being shown - it is
better to link to a point at the top of the page.

Zoom The zoom factor to show the target page at:
0..1600 = Zoom percentage
-1 = Fit in window
-2 = Fit width

Return values

0 The OutlineID was invalid

1 Destination set successfull

SetOutlineJavaScript
JavaScript, Outlines

Description

Specifies the JavaScript to run when the user clicks on the outline item (bookmark).

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetOutlineJavaScript(OutlineID: Integer;
 JavaScript: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetOutlineJavaScript(
 OutlineID As Long, JavaScript As String) As Long

 DLL

int DPLSetOutlineJavaScript(int InstanceID, int OutlineID,
 wchar_t * JavaScript);

Parameters

OutlineID The ID of the outline as returned by the NewOutline function. Alternatively, use
the GetOutlineID function to get a valid outline ID.

JavaScript The JavaScript to execute.

Return values

0 The OutlineID was invalid

1 The JavaScript action was successfully added to the outline ID

SetOutlineNamedDestination
Annotations and hotspot links, Outlines

Version history

This function was introduced in Quick PDF Library version 7.22.

Description

Sets the destination of the specified outline item (bookmark) to a named destination.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetOutlineNamedDestination(
 OutlineID: Integer; DestName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetOutlineNamedDestination(
 OutlineID As Long, DestName As String) As Long

 DLL

int DPLSetOutlineNamedDestination(int InstanceID, int OutlineID,
 wchar_t * DestName);

Parameters

OutlineID The ID of the outline as returned by the NewOutline function. Alternatively, use
the GetOutlineID function to get a valid outline ID.

DestName The named destination.

Return values

0 The OutlineID was invalid

1 Success

SetOutlineOpenFile
Outlines

Description

Sets the outline item (bookmark) to open a file when it is clicked.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetOutlineOpenFile(OutlineID: Integer;
 FileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetOutlineOpenFile(
 OutlineID As Long, FileName As String) As Long

 DLL

int DPLSetOutlineOpenFile(int InstanceID, int OutlineID,
 wchar_t * FileName);

Parameters

OutlineID The ID of the outline as returned by the NewOutline function. Alternatively, use
the GetOutlineID function to get a valid outline ID.

FileName The file to open when the outline is clicked. This should be in a specific format.
Back slashes should be converted to forward slashes and the drive, if any, should
be specified as just the drive letter between forward slashes without a colon. For
example, the file "c:\my documents\hello.pdf" should be specified as "/c/my
documents/hello.pdf". Relative path names are valid, including paths that include
the ".." operator to move up a directory.

Return values

0 The OutlineID was invalid

1 The outline destination was set successfully

SetOutlineRemoteDestination
Outlines

Version history

This function was introduced in Quick PDF Library version 7.22.

Description

Sets the outline item (bookmark) to open another PDF when it is clicked.
The opening page number and various sizing/positioning values can be specified.
Note: because the page size of the target document is not known, all positions are specified in points measured from the bottom left corner of
the opening page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetOutlineRemoteDestination(
 OutlineID: Integer; FileName: WideString; OpenPage, Zoom,
 DestType: Integer; PntLeft, PntTop, PntRight, PntBottom: Double;
 NewWindow: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetOutlineRemoteDestination(
 OutlineID As Long, FileName As String, OpenPage As Long,
 Zoom As Long, DestType As Long, PntLeft As Double,
 PntTop As Double, PntRight As Double, PntBottom As Double,
 NewWindow As Long) As Long

 DLL

int DPLSetOutlineRemoteDestination(int InstanceID, int OutlineID,
 wchar_t * FileName, int OpenPage, int Zoom, int DestType,
 double PntLeft, double PntTop, double PntRight,
 double PntBottom, int NewWindow);

Parameters

OutlineID The ID of the outline as returned by the NewOutline function. Alternatively, use the GetOutlineID function to get a
valid outline ID.

FileName The filename of the PDF document to open when the outline is clicked. This should be in a specific format. Back slashes
should be converted to forward slashes and the drive, if any, should be specified as just the drive letter between forward
slashes without a colon. For example, the file "c:\my documents\hello.pdf" should be specified as "/c/my
documents/hello.pdf". Relative path names are valid, including paths that include the ".." operator to move up a directory.

OpenPage The page number to jump to when the target document is opened. The first page has an index of zero (0).

Zoom The zoom percentage to use when the document is opened, valid values from 0 to 6400. Only used for DestType = 1,
should be set to 0 for other DestTypes.

DestType 1 = "XYZ" - the target page is positioned at the point specified by the Left and Top parameters. The Zoom parameter
specifies the zoom percentage.
2 = "Fit" - the entire page is zoomed to fit the window. None of the other parameters are used and should be set to zero.
3 = "FitH" - the page is zoomed so that the entire width of the page is visible. The height of the page may be greater or
less than the height of the window. The page is positioned at the vertical position specified by the Top parameter.
4 = "FitV" - the page is zoomed so that the entire height of the page can be seen. The width of the page may be greater
or less than the width of the window. The page is positioned at the horizontal position specified by the Left parameter.
5 = "FitR" - the page is zoomed so that a certain rectangle on the page is visible. The Left, Top, Right and Bottom
parameters define the rectangular area on the page.
6 = "FitB" - the page is zoomed so that it's bounding box is visible.
7 = "FitBH" - the page is positioned vertically at the position specified by the Top parameter. The page is zoomed so that
the entire width of the page's bounding box is visible.
8 = "FitBV" - the page is positioned at the horizontal position specified by the Left parameter. The page is zoomed just
enough to fit the entire height of the bounding box into the window.

PntLeft The horizontal position used by DestType = 1, 4, 5 and 8. The position is specified in points measured from the bottom
left corner of the target document's page.

PntTop The vertical position used by DestType = 1, 3, 5 and 7. The position is specified in points measured from the bottom left
corner of the target document's page.

PntRight The horizontal position of the righthand edge of the rectangle. Used by DestType = 5. The position is specified in points
measured from the bottom left corner of the target document's page.

PntBottom The horizontal position of the bottom of the rectangle. Used by DestType = 5. The position is specified in points measured
from the bottom left corner of the target document's page.

NewWindow 0 = Replace the current document with the target document
1 = Open the target document in a new window unless the user has specified a different preference in the PDF viewer

Return values

0 The OutlineID was invalid

1 The outline destination was set successfully

SetOutlineStyle
Outlines

Description

Sets the way an outline item (bookmark) is displayed.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetOutlineStyle(OutlineID, SetItalic,
 SetBold: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetOutlineStyle(
 OutlineID As Long, SetItalic As Long, SetBold As Long) As Long

 DLL

int DPLSetOutlineStyle(int InstanceID, int OutlineID, int SetItalic,
 int SetBold);

Parameters

OutlineID The ID of the outline as returned by the NewOutline function. Alternatively, use
the GetOutlineID function to get a valid outline ID.

SetItalic 0 = Normal
1 = Italic

SetBold 0 = Normal
1 = Bold

Return values

0 The Outline ID provided was invalid

1 The style of the outline item was set successfully

SetOutlineTitle
Outlines

Description

Sets the title of an outline item (bookmark).

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetOutlineTitle(OutlineID: Integer;
 NewTitle: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetOutlineTitle(
 OutlineID As Long, NewTitle As String) As Long

 DLL

int DPLSetOutlineTitle(int InstanceID, int OutlineID, wchar_t * NewTitle);

Parameters

OutlineID The ID of the outline as returned by the NewOutline function. Alternatively, use
the GetOutlineID function to get a valid outline ID.

NewTitle The new title for the outline item.

Return values

0 The Outline ID provided was invalid

1 The title of the outline item was set successfully

SetOutlineWebLink
Outlines

Description

Specifies an internet link that should be opened when the user clicks on the outline item
(bookmark).

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetOutlineWebLink(OutlineID: Integer;
 Link: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetOutlineWebLink(
 OutlineID As Long, Link As String) As Long

 DLL

int DPLSetOutlineWebLink(int InstanceID, int OutlineID, wchar_t * Link);

Parameters

OutlineID The ID of the outline as returned by the NewOutline function. Alternatively, use
the GetOutlineID function to get a valid outline ID.

Link The URL to link to. Some examples:
"http://www.example.com/"
"mailto:info@example.com"

Return values

0 The OutlineID was invalid

1 The web link action was added to the outline item successfully

SetOverprint
Vector graphics, Page layout

Version history

This function was introduced in Quick PDF Library version 7.22.

Description

Sets the overprint parameter of the graphics state for subsequently drawn text and graphics.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetOverprint(StrokingOverprint,
 OtherOverprint, OverprintMode: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetOverprint(
 StrokingOverprint As Long, OtherOverprint As Long,
 OverprintMode As Long) As Long

 DLL

int DPLSetOverprint(int InstanceID, int StrokingOverprint,
 int OtherOverprint, int OverprintMode);

Parameters

StrokingOverprint Controls overprint for stroking operations:
0 = Turn overprint off
1 = Turn overprint on

OtherOverprint Controls overprint for non-stroking operations:
0 = Turn overprint off
1 = Turn overprint on

OverprintMode Sets the interpretation of a tint value of 0.0 for a color component in a
DeviceCMYK colour space.
0 = Default behaviour
1 = Nonzero overprint mode

Return values

0 An error occurred. One or more of the parameters were out of range.

1 Success

SetPDFAMode
Document properties

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Sets up the document for PDF/A standards compliance mode.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetPDFAMode(NewMode: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetPDFAMode(
 NewMode As Long) As Long

 DLL

int DPLSetPDFAMode(int InstanceID, int NewMode);

Parameters

NewMode 2 = PDF/A-1b

Return values

0 Invalid NewMode parameter

1 The compliance mode was set successfully

SetPNGTransparencyColor
Image handling, Color

Version history

This function was introduced in Quick PDF Library version 7.11.

Description

Sets the RGB color to use as the transparency mask in PNG images that are generated by the
rendering functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetPNGTransparencyColor(RedByte, GreenByte,
 BlueByte: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetPNGTransparencyColor(
 RedByte As Long, GreenByte As Long, BlueByte As Long) As Long

 DLL

int DPLSetPNGTransparencyColor(int InstanceID, int RedByte, int GreenByte,
 int BlueByte);

Parameters

RedByte The red component

GreenByte The green component

BlueByte The blue component

SetPageActionMenu
Page properties

Description

Specifies a menu item to run when the document is first opened.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetPageActionMenu(
 MenuItem: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetPageActionMenu(
 MenuItem As String) As Long

 DLL

int DPLSetPageActionMenu(int InstanceID, wchar_t * MenuItem);

Parameters

MenuItem The MenuItem to call, for example "Print"

Return values

0 The open action could not be set, there is a problem with the document

1 The page open action was set successfully

SetPageBox
Page properties

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Version history

This function was introduced in Quick PDF Library version 7.18.

Description

Sets the dimensions of the selected page's boundary rectangles.
The MediaBox represents the physical medium of the page.
The CropBox represents the visible region of the page, the contents will be clipped to this region.
The BleedBox is similar to the CropBox, but is the rectangle used in a production environment.
The TrimBox indicates the intended dimensions of the finished page after trimming, and the ArtBox
defines the extent of the page's meaningful content as intended by the page's creator.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetPageBox(BoxType: Integer; Left, Top,
 Width, Height: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetPageBox(BoxType As Long,
 Left As Double, Top As Double, Width As Double,
 Height As Double) As Long

 DLL

int DPLSetPageBox(int InstanceID, int BoxType, double Left, double Top,
 double Width, double Height);

Parameters

BoxType 1 = MediaBox
2 = CropBox
3 = BleedBox
4 = TrimBox
5 = ArtBox

Left The horizontal co-ordinate of the left edge of the rectangle

Top The vertical co-ordinate of the top edge of the rectangle

Width The width of the rectangle

Height The height of the rectangle

SetPageContentFromString
Page properties, Page layout, Page manipulation

Version history

This function was renamed in Quick PDF Library version 8.11.
The function name in earlier versions was SetPageContent.

Description

This function allows the content of the selected PDF page to be set. This is for advanced use only!
If incorrect information is put into the page's content stream then the PDF file may not load
correctly with Acrobat or any other PDF viewer.
In previous versions of Quick PDF Library this function would only set the content of the selected
content stream part.
From version 8.11 this function sets the content of the entire page resulting in a single content
stream part. The SetContentStreamFromString function can be used to set the PDF page
description commands of the content stream part selected with the SelectContentStream
function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetPageContentFromString(
 const Source: AnsiString): Integer;

 DLL

int DPLSetPageContentFromString(int InstanceID, char * Source);

Parameters

Source The new contents of the page

SetPageContentFromVariant
Page properties, Page layout, Page manipulation

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

This function allows the content of the selected PDF page to be set. This is for advanced use only!
If incorrect information is put into the page's content stream then the PDF file may not load
correctly with Acrobat or any other PDF viewer.
This function sets the content of the entire page resulting in a single content stream part.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetPageContentFromVariant(
 NewValue As Variant) As Long

Parameters

NewValue The new contents of the page as a byte array variant

SetPageDimensions
Page properties, Page layout

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Set the size of the selected page.
This function updates the MediaBox entry which represents the physical medium of the page and
will only affect content subsequently added to the page. This function does not resize the already
existing content of the page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetPageDimensions(NewPageWidth,
 NewPageHeight: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetPageDimensions(
 NewPageWidth As Double, NewPageHeight As Double) As Long

 DLL

int DPLSetPageDimensions(int InstanceID, double NewPageWidth,
 double NewPageHeight);

Parameters

NewPageWidth The new width of the page

NewPageHeight The new height of the page

Return values

0 The page size could not be set. This should never occur.

1 The page was resized successfully

SetPageLayout
Document properties

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Sets the initial page layout of the document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetPageLayout(
 NewPageLayout: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetPageLayout(
 NewPageLayout As Long) As Long

 DLL

int DPLSetPageLayout(int InstanceID, int NewPageLayout);

Parameters

NewPageLayout 0 = Single page
1 = One column
2 = Two columns, odd-numbered pages on left
3 = Two columns, odd-numbered pages on right
4 = Two pages, odd-numbered pages on left
5 = Two pages, odd-numbered pages on right
6 = No preference (setting removed from document)

Return values

0 The page layout could not be set

1 The page layout was set successfully

SetPageMode
Document properties

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Sets the initial page mode of the document.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetPageMode(NewPageMode: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetPageMode(
 NewPageMode As Long) As Long

 DLL

int DPLSetPageMode(int InstanceID, int NewPageMode);

Parameters

NewPageMode 0 = Normal view
1 = Show the outlines pane
2 = Show the thumbnails pane
3 = Show the document in full screen mode
4 = Optional content group panel visible
5 = Attachments panel visible

Return values

0 The page mode could not be set

1 The page mode was set successfully

SetPageSize
Page properties, Page layout

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Use this function to set the current page to a named size, for example "A4" or "Letter Landscape".

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetPageSize(PaperName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetPageSize(
 PaperName As String) As Long

 DLL

int DPLSetPageSize(int InstanceID, wchar_t * PaperName);

Parameters

PaperName The name of the paper, one of the following: A0 to A10, B0 to B10, ISOB0 to
ISOB10, C0 to C7, DL, Letter, Legal, Statement, Tabloid, Ledger, Executive,
Folio. You can make a landscape page by adding the word Landscape after the
paper name, for example "A3 Landscape".

Return values

0 The specified paper name was not valid

1 The page was resized successfully

SetPageThumbnail
Page manipulation

Description

Sets the selected image as the "thumbnail" for the selected page.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetPageThumbnail: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetPageThumbnail As Long

 DLL

int DPLSetPageThumbnail(int InstanceID);

Return values

0 No image was selected

1 The thumbnail was set successfully

SetPageTransparencyGroup
Vector graphics, Text, Page layout

Description

Allows the transparency group for the page to be set. Whenever image are used as masks for other
images the page transparency group should be set to ensure consistent results across different
versions of PDF viewers.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetPageTransparencyGroup(CS, Isolate,
 Knockout: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetPageTransparencyGroup(
 CS As Long, Isolate As Long, Knockout As Long) As Long

 DLL

int DPLSetPageTransparencyGroup(int InstanceID, int CS, int Isolate,
 int Knockout);

Parameters

CS The color space to use:
1 = RGB
2 = CMYK

Isolate This parameter has no effect and is reserved for future use. It should always be set
to 0.

Knockout Indicates whether items added to the page are drawn over each other or "knocked
out" of the page. In knockout mode a "hole" is made through existing objects on
the page in the shape of the new object. The new object is then drawn against the
background.
0 = Do not knockout
1 = Knockout

SetPageUserUnit
Page properties

Version history

This function was introduced in Quick PDF Library version 10.15.

Description

Applies a scaling factor to the PDF to allow pages size of larger than 200x200 inches to be defined.
SetPageDimensions allows a maximum of 14040x14400 units to be define and this is still the case
in PDF 1.6 and above. PDF 1.6 and above allow chaning the UserUnit for 1/72" to a much larger
value. ie SerPageUserUnit(2); would scale the page maximum size to 400x400" where in point
would actually scale to 2 points.
If you need to use this function then you should make sure QP.SetInformation(0, "1.6"); to set te
PDF verision to at least version 1.6.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetPageUserUnit(UserUnit: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetPageUserUnit(
 UserUnit As Double) As Long

 DLL

int DPLSetPageUserUnit(int InstanceID, double UserUnit);

Parameters

UserUnit The scale factor to apply. Default for all PDF's is 1.0.

SetPrecision
Measurement and coordinate units

Description

Use this function to set the precision of numerical values stored in the PDF document. Setting the
precision to a lower number will reduce the size of the generated file, while a higher precision will
result in a larger file, although objects and graphics will be more accurately positioned. The default
precision is 4.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetPrecision(
 NewPrecision: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetPrecision(
 NewPrecision As Long) As Long

 DLL

int DPLSetPrecision(int InstanceID, int NewPrecision);

Parameters

NewPrecision The precision to use for subsequent drawing operations. A value from 2 to 8.

Return values

0 The precision specified was out of range

1 The precision was set successfully

SetPrinterDevModeFromString
Rendering and printing

Version history

This function was introduced in Quick PDF Library version 8.12.

Description

Sets the printer DEVMODE structure for the next printing operation using the value retrieved from
a prior call to GetPrinterDevModeToString.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetPrinterDevModeFromString(
 const Source: AnsiString): Integer;

 DLL

int DPLSetPrinterDevModeFromString(int InstanceID, char * Source);

Parameters

Source A value returned from the GetPrinterDevModeToString function.

SetPrinterDevModeFromVariant
Rendering and printing

Version history

This function was introduced in Quick PDF Library version 8.12.

Description

Sets the printer DEVMODE structure for the next printing operation using the value retrieved from
a prior call to GetPrinterDevModeToVariant.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetPrinterDevModeFromVariant(
 Source As Variant) As Long

Parameters

Source A value returned from the GetPrinterDevModeToVariant function.

SetRenderCropType
Rendering and printing

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Sets the page boundary to use as the cropping area for rendering.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetRenderCropType(
 NewCropType: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetRenderCropType(
 NewCropType As Long) As Long

 DLL

int DPLSetRenderCropType(int InstanceID, int NewCropType);

Parameters

NewCropType 1 = MediaBox
2 = CropBox
3 = BleedBox
4 = TrimBox
5 = ArtBox

Return values

0 The NewCropType parameter was out of range.

1 The rendering crop type was set successfully.

SetRenderDCErasePage
Rendering and printing

Version history

This function was introduced in Quick PDF Library version 7.25.

Description

By default the RenderPageToDC and DARenderPageToDC functions fill the page area with solid
white background before rendering the page contents.
This function can be used to suppress the background allowing the page contents to be drawn over
any existing content in the supplied device context.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetRenderDCErasePage(
 NewErasePage: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetRenderDCErasePage(
 NewErasePage As Long) As Long

 DLL

int DPLSetRenderDCErasePage(int InstanceID, int NewErasePage);

Parameters

NewErasePage 0 = No page background is drawn
1 = The page area is filled with a solid white background before rendering

SetRenderDCOffset
Rendering and printing

Version history

This function was introduced in Quick PDF Library version 7.22.

Description

Sets the position on the device context that the RenderPageToDC and DARenderPageToDC
functions use for the top-left corner of the rendered output.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetRenderDCOffset(NewOffsetX,
 NewOffsetY: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetRenderDCOffset(
 NewOffsetX As Long, NewOffsetY As Long) As Long

 DLL

int DPLSetRenderDCOffset(int InstanceID, int NewOffsetX, int NewOffsetY);

Parameters

NewOffsetX The horizontal offset measured in pixels

NewOffsetY The vertical offset measured in pixels

SetRenderOptions
Rendering and printing

Version history

This function was introduced in Quick PDF Library version 9.15.

Description

Sets various options for the renderer.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetRenderOptions(OptionID,
 NewValue: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetRenderOptions(
 OptionID As Long, NewValue As Long) As Long

 DLL

int DPLSetRenderOptions(int InstanceID, int OptionID, int NewValue);

Parameters

OptionID 1 = Render Formfields
2 = Render Annotations
3 = Render Formfields only
4 = Gamma Correction
5 = ICCBased colorspaces
6 = Progress HWND
7 = Progress Message
8 = Progress Data
9 = Path combine mode

NewValue For RenderFormFields:
0 = Don't render fomfields
1 = Render formfields (default)
For RenderAnnotations:
0 = Don't render annotations
1 = Render annotations(default)
For RenderFormFieldsOnly:
0 = Render the page including formfields (default)
1 = Only render the formfields
For UseGammaCorrection:
0 = Turn off CMYK gamma correction
1 = Use CMYK Gamma correction (default)
For Ignore ICCBased colorspaces:
0 = Render using ICCBased colorspaces
1 = Ignore ICCBased colorspace corrections
For progress options:
Reserved for future use
For path combine mode:
0 = Normal (no path combining)
1 = Combine paths

SetRenderScale
Rendering and printing

Version history

This function was introduced in Quick PDF Library version 7.22.

Description

Applies a non-integer scaling to the DPI parameter of subsequent calls to any of the rendering
functions.
For example, if the render scale is set to 0.1 and the RenderPageToFile function is called with the
DPI parameter set to 125, the resulting image will be rendered with an effective DPI of 12.5.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetRenderScale(NewScale: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetRenderScale(
 NewScale As Double) As Long

 DLL

int DPLSetRenderScale(int InstanceID, double NewScale);

Parameters

NewScale The new render scale

SetScale
Measurement and coordinate units

Description

Scales the co-ordinate system for all subsequent drawing operations. A scale factor of 1 is
equivalent to calling SetMeasurementUnits(0) which sets the measurement units to be Points. A
scale factor of (72 / 25.4) is equivalent to calling SetMeasurementUnits(1) which sets the
measurement units to be millimetres.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetScale(NewScale: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetScale(
 NewScale As Double) As Long

 DLL

int DPLSetScale(int InstanceID, double NewScale);

Parameters

NewScale The scale factor to use

SetSignProcessCustomSubFilter
Security and Signatures

Version history

This function was introduced in Quick PDF Library version 11.11.

Description

Sets the SubFilter entry with custom string for a digital signature process, specifying the encoding
of the signature value.
Similar to SetSignProcessSubFilter but the Subfilter entry is customizable

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetSignProcessCustomSubFilter(
 SignProcessID: Integer; SubFilterStr: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetSignProcessCustomSubFilter(
 SignProcessID As Long, SubFilterStr As String) As Long

 DLL

int DPLSetSignProcessCustomSubFilter(int InstanceID, int SignProcessID,
 wchar_t * SubFilterStr);

Parameters

SignProcessID A value returned by the NewSignProcessFromFile,
NewSignProcessFromStream or NewSignProcessFromString functions.

SubFilterStr Custom SubFilter string entry

Return values

0 The SignProcessID parameter was invalid or the SubFilter parameter was out
of range

1 Success

SetSignProcessField
Security and Signatures

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Sets the signature field to use for a digital signature process.
If a field with a specified name is not found a new signature field will be added with the given
name. The new field will be invisible (zero width and height) and will be attached to the first page
in the document. Call SetSignProcessFieldBounds to set location and size of new form field and
SetSignProcessFieldPage to set the page it is placed on.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetSignProcessField(SignProcessID: Integer;
 SignatureFieldName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetSignProcessField(
 SignProcessID As Long, SignatureFieldName As String) As Long

 DLL

int DPLSetSignProcessField(int InstanceID, int SignProcessID,
 wchar_t * SignatureFieldName);

Parameters

SignProcessID A value returned by the NewSignProcessFromFile,
NewSignProcessFromStream or NewSignProcessFromString
functions.

SignatureFieldName The name of the signature form field

SetSignProcessFieldBounds
Security and Signatures

Version history

This function was introduced in Quick PDF Library version 9.14.

Description

Sets the location and size of the signature field in the specified digital signature process.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetSignProcessFieldBounds(
 SignProcessID: Integer; Left, Top, Width, Height: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetSignProcessFieldBounds(
 SignProcessID As Long, Left As Double, Top As Double,
 Width As Double, Height As Double) As Long

 DLL

int DPLSetSignProcessFieldBounds(int InstanceID, int SignProcessID,
 double Left, double Top, double Width, double Height);

Parameters

SignProcessID A value returned by the NewSignProcessFromFile,
NewSignProcessFromStream or NewSignProcessFromString functions.

Left The horizontal coordinate of the left edge of the area measured in points
from the left edge of the media box.

Top The vertical coordinate of the top edge of the area measured in points from
the bottom edge of the media box.

Width The width of the area measured in points.

Height The height of the area measured in points.

Return values

0 Invalid SignProcessID parameter

1 Success

SetSignProcessFieldImageFromFile
Security and Signatures

Version history

This function was introduced in Quick PDF Library version 9.14.

Description

Sets the image to use for a visual signature field in the specified digital signature process.
The SetSignProcessFieldBounds function can be used to specify the location and size of the
signature field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetSignProcessFieldImageFromFile(
 SignProcessID: Integer; ImageFileName: WideString;
 Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetSignProcessFieldImageFromFile(
 SignProcessID As Long, ImageFileName As String,
 Options As Long) As Long

 DLL

int DPLSetSignProcessFieldImageFromFile(int InstanceID, int SignProcessID,
 wchar_t * ImageFileName, int Options);

Parameters

SignProcessID A value returned by the NewSignProcessFromFile,
NewSignProcessFromStream or NewSignProcessFromString
functions.

ImageFileName The path and file name of the image to use for the visual signature.

Options For multi-page TIFF images this parameter specifies the page number to
load.
For PNG images:
0 = Load the image as usual
1 = Load the alpha channel as a greyscale image
2 = Load the image and alpha channel (limit alpha to 8-bit)
3 = Load the image (limit image 8-bit/channel)
4 = Load the alpha channel (limit to 8-bit/channel)
5 = Load the image with alpha channel (limit both to 8-bit/channel)
6 = Load the image and alpha channel
7 = Load the image and ICC color profile
For other image types this parameter should be set to 0.
Setting Options to -1 forces TIFF, EMF and WMF images to be loaded using
the GDI+ graphics library. Multipage TIFF images can also be loaded using
GDI+ by setting the Options parameter to -PageNumber (for example -3 for
page 3).

Return values

0 Image could not be added

1 Success

SetSignProcessFieldPage
Security and Signatures

Version history

This function was introduced in Quick PDF Library version 9.15.

Description

Specifies the page number where the new signature field will be placed. By default the signature
field will be attached to the first page in the document.
If the field name specified by SetSignProcessField already exists then a call to this function will
be ignored and the field will remain on the page it is currently attached to.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetSignProcessFieldPage(SignProcessID,
 SignaturePage: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetSignProcessFieldPage(
 SignProcessID As Long, SignaturePage As Long) As Long

 DLL

int DPLSetSignProcessFieldPage(int InstanceID, int SignProcessID,
 int SignaturePage);

Parameters

SignProcessID A value returned by the NewSignProcessFromFile,
NewSignProcessFromStream or NewSignProcessFromString functions.

SignaturePage The number of the page that the signature should appear on.

Return values

0 The SignProcessID parameter is invalid

1 Success

SetSignProcessInfo
Security and Signatures

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Sets the signing infomation for a digital signature process.
This information includes the reason for signing, the location and contact info. The supplied details
will be displayed by the PDF viewer when the signature has been validated.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetSignProcessInfo(SignProcessID: Integer;
 Reason, Location, ContactInfo: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetSignProcessInfo(
 SignProcessID As Long, Reason As String, Location As String,
 ContactInfo As String) As Long

 DLL

int DPLSetSignProcessInfo(int InstanceID, int SignProcessID,
 wchar_t * Reason, wchar_t * Location, wchar_t * ContactInfo);

Parameters

SignProcessID A value returned by the NewSignProcessFromFile,
NewSignProcessFromStream or NewSignProcessFromString functions.

Reason The reason for signing

Location The location that the signing was done

ContactInfo The contact information of the signer

SetSignProcessKeyset
Security and Signatures

Version history

This function was introduced in Quick PDF Library version 9.16.

Description

Sets the MS Crypto API keyset value.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetSignProcessKeyset(SignProcessID,
 KeysetID: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetSignProcessKeyset(
 SignProcessID As Long, KeysetID As Long) As Long

 DLL

int DPLSetSignProcessKeyset(int InstanceID, int SignProcessID,
 int KeysetID);

Parameters

SignProcessID A value returned by the NewSignProcessFromFile,
NewSignProcessFromStream or NewSignProcessFromString functions.

KeysetID 1 = CRYPT_USER_KEYSET (Default)
2 = CRYPT_MACHINE_KEYSET

Return values

0 Invalid SignProcessID parameter or KeysetID out of range

1 Signature process keyset was set successfully

SetSignProcessPFXFromFile
Security and Signatures

Version history

This function was introduced in Quick PDF Library version 9.13.

Description

Sets a file to use as the digital identity for a digital signature process.
The file should be in PKCS #12 format, also known as a PFX file, and contain a private key as well
as an X.509 certificate. PFX files are usually protected with a password.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetSignProcessPFXFromFile(
 SignProcessID: Integer; PFXFileName, PFXPassword: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetSignProcessPFXFromFile(
 SignProcessID As Long, PFXFileName As String,
 PFXPassword As String) As Long

 DLL

int DPLSetSignProcessPFXFromFile(int InstanceID, int SignProcessID,
 wchar_t * PFXFileName, wchar_t * PFXPassword);

Parameters

SignProcessID A value returned by the NewSignProcessFromFile,
NewSignProcessFromStream or NewSignProcessFromString functions.

PFXFileName The path and name of the PFX signature file (PKCS #12 format).

PFXPassword The password to open the PFX file.

SetSignProcessPassthrough
Security and Signatures

Version history

This function was introduced in Quick PDF Library version 9.15.

Description

Sets the signature process to passthrough mode.
In this mode, the PDF is prepared using a placeholder for the signature data. The user can then
replace this placeholder with the signature data of their choice using the
GetSignProcessByteRange function to determine the byte range that the signature hashing
should be calculated over.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetSignProcessPassthrough(SignProcessID,
 SignatureLength: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetSignProcessPassthrough(
 SignProcessID As Long, SignatureLength As Long) As Long

 DLL

int DPLSetSignProcessPassthrough(int InstanceID, int SignProcessID,
 int SignatureLength);

Parameters

SignProcessID A value returned by the NewSignProcessFromFile,
NewSignProcessFromStream or NewSignProcessFromString
functions.

SignatureLength The length in bytes of the raw binary signature data. This value will be
doubled when allocating the space in the PDF as the signature data should
be written using hex encoding (two characters per raw byte).

Return values

0 The signature could not be set into passthrough mode.

1 Success

SetSignProcessSubFilter
Security and Signatures

Version history

This function was introduced in Quick PDF Library version 9.14.

Description

Sets the SubFilter entry for a digital signature process, specifying the encoding of the signature
value.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetSignProcessSubFilter(SignProcessID,
 SubFilter: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetSignProcessSubFilter(
 SignProcessID As Long, SubFilter As Long) As Long

 DLL

int DPLSetSignProcessSubFilter(int InstanceID, int SignProcessID,
 int SubFilter);

Parameters

SignProcessID A value returned by the NewSignProcessFromFile,
NewSignProcessFromStream or NewSignProcessFromString functions.

SubFilter 1 = adbe.pkcs7.sha1
2 = adbe.pkcs7.detached

Return values

0 The SignProcessID parameter was invalid or the SubFilter parameter was out
of range

1 Success

SetTabOrderMode
Form fields, Annotations and hotspot links

Version history

This function was introduced in Quick PDF Library version 9.16.

Description

This function sets the default tabbing order mode for the currently selected page for all of the
annotations including the formfields when tabbing in a PDF viewer.
If you use SetFormFieldTabOrder to define a custom tabbing order then you should set the
tabbing order to 'S'tructure mode.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTabOrderMode(Mode: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTabOrderMode(
 Mode As String) As Long

 DLL

int DPLSetTabOrderMode(int InstanceID, wchar_t * Mode);

Parameters

Mode The mode string
'S' - Structure mode - use the order of the Annots and/or Formfields as they are
defined
'R' - Row Mode - Left to right, top to bottom order
'C' - Column Mode - Top to botton, left to right order

Return values

0 The tabbing mode was not set correctly

1 Success

SetTableBorderColor
Color, Page layout

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Sets the color of the specified table border using the RGB color space.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTableBorderColor(TableID,
 BorderIndex: Integer; Red, Green, Blue: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTableBorderColor(
 TableID As Long, BorderIndex As Long, Red As Double,
 Green As Double, Blue As Double) As Long

 DLL

int DPLSetTableBorderColor(int InstanceID, int TableID, int BorderIndex,
 double Red, double Green, double Blue);

Parameters

TableID A TableID returned by the CreateTable function

BorderIndex 0 = All borders
1 = Left
2 = Top
3 = Right
4 = Bottom

Red The red component of the color, a value from 0 to 1

Green The green component of the color, a value from 0 to 1

Blue The blue component of the color, a value from 0 to 1

SetTableBorderColorCMYK
Color, Page layout

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Sets the color of the specified table border using the CMYK color space.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTableBorderColorCMYK(TableID,
 BorderIndex: Integer; C, M, Y, K: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTableBorderColorCMYK(
 TableID As Long, BorderIndex As Long, C As Double,
 M As Double, Y As Double, K As Double) As Long

 DLL

int DPLSetTableBorderColorCMYK(int InstanceID, int TableID,
 int BorderIndex, double C, double M, double Y, double K);

Parameters

TableID A TableID returned by the CreateTable function

BorderIndex 0 = All borders
1 = Left
2 = Top
3 = Right
4 = Bottom

C The cyan component of the color, a value from 0 to 1

M The magenta component of the color, a value from 0 to 1

Y The yellow component of the color, a value from 0 to 1

K The black component of the color, a value from 0 to 1

SetTableBorderWidth
Page layout

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Sets the width of the specified table border.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTableBorderWidth(TableID,
 BorderIndex: Integer; NewWidth: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTableBorderWidth(
 TableID As Long, BorderIndex As Long,
 NewWidth As Double) As Long

 DLL

int DPLSetTableBorderWidth(int InstanceID, int TableID, int BorderIndex,
 double NewWidth);

Parameters

TableID A TableID returned by the CreateTable function

BorderIndex 0 = All borders
1 = Left
2 = Top
3 = Right
4 = Bottom

NewWidth The new width of the specified table border

SetTableCellAlignment
Page layout

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Sets the vertical and horizontal alignment of one or more cells.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTableCellAlignment(TableID, FirstRow,
 FirstColumn, LastRow, LastColumn, NewCellAlignment: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTableCellAlignment(
 TableID As Long, FirstRow As Long, FirstColumn As Long,
 LastRow As Long, LastColumn As Long,
 NewCellAlignment As Long) As Long

 DLL

int DPLSetTableCellAlignment(int InstanceID, int TableID, int FirstRow,
 int FirstColumn, int LastRow, int LastColumn,
 int NewCellAlignment);

Parameters

TableID A TableID returned by the CreateTable function

FirstRow The the number of the first row to set. Top row is row number 1.

FirstColumn The the number of the first column to set. Left most column is column
number 1.

LastRow The number of the final row to set

LastColumn The number of the final column to set

NewCellAlignment 0 = top left
1 = top center
2 = top right
3 = middle left
4 = middle center
5 = middle right
6 = bottom left
7 = bottom center
8 = bottom right

SetTableCellBackgroundColor
Color, Page layout

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Sets the background color of one or more cells using the RGB color space.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTableCellBackgroundColor(TableID,
 FirstRow, FirstColumn, LastRow, LastColumn: Integer; Red, Green,
 Blue: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTableCellBackgroundColor(
 TableID As Long, FirstRow As Long, FirstColumn As Long,
 LastRow As Long, LastColumn As Long, Red As Double,
 Green As Double, Blue As Double) As Long

 DLL

int DPLSetTableCellBackgroundColor(int InstanceID, int TableID,
 int FirstRow, int FirstColumn, int LastRow, int LastColumn,
 double Red, double Green, double Blue);

Parameters

TableID A TableID returned by the CreateTable function

FirstRow The the number of the first row to set. Top row is row number 1.

FirstColumn The the number of the first column to set. Left most column is column number
1.

LastRow The number of the final row to set

LastColumn The number of the final column to set

Red The red component of the color, a value from 0 to 1

Green The green component of the color, a value from 0 to 1

Blue The blue component of the color, a value from 0 to 1

SetTableCellBackgroundColorCMYK
Color, Page layout

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Sets the background color of one or more cells using the CMYK color space.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTableCellBackgroundColorCMYK(TableID,
 FirstRow, FirstColumn, LastRow, LastColumn: Integer; C, M, Y,
 K: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTableCellBackgroundColorCMYK(
 TableID As Long, FirstRow As Long, FirstColumn As Long,
 LastRow As Long, LastColumn As Long, C As Double, M As Double,
 Y As Double, K As Double) As Long

 DLL

int DPLSetTableCellBackgroundColorCMYK(int InstanceID, int TableID,
 int FirstRow, int FirstColumn, int LastRow, int LastColumn,
 double C, double M, double Y, double K);

Parameters

TableID A TableID returned by the CreateTable function

FirstRow The the number of the first row to set. Top row is row number 1.

FirstColumn The the number of the first column to set. Left most column is column number
1.

LastRow The number of the final row to set

LastColumn The number of the final column to set

C The cyan component of the color, a value from 0 to 1

M The magenta component of the color, a value from 0 to 1

Y The yellow component of the color, a value from 0 to 1

K The black component of the color, a value from 0 to 1

SetTableCellBorderColor
Color, Page layout

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Sets the color of one or more cell borders using the RGB color space.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTableCellBorderColor(TableID, FirstRow,
 FirstColumn, LastRow, LastColumn, BorderIndex: Integer; Red, Green,
 Blue: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTableCellBorderColor(
 TableID As Long, FirstRow As Long, FirstColumn As Long,
 LastRow As Long, LastColumn As Long, BorderIndex As Long,
 Red As Double, Green As Double, Blue As Double) As Long

 DLL

int DPLSetTableCellBorderColor(int InstanceID, int TableID, int FirstRow,
 int FirstColumn, int LastRow, int LastColumn, int BorderIndex,
 double Red, double Green, double Blue);

Parameters

TableID A TableID returned by the CreateTable function

FirstRow The the number of the first row to set. Top row is row number 1.

FirstColumn The the number of the first column to set. Left most column is column number
1.

LastRow The number of the final row to set

LastColumn The number of the final column to set

BorderIndex 0 = All borders
1 = Left
2 = Top
3 = Right
4 = Bottom

Red The red component of the color, a value from 0 to 1

Green The green component of the color, a value from 0 to 1

Blue The blue component of the color, a value from 0 to 1

SetTableCellBorderColorCMYK
Color, Page layout

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Sets the color of one or more cell borders using the CMYK color space.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTableCellBorderColorCMYK(TableID,
 FirstRow, FirstColumn, LastRow, LastColumn, BorderIndex: Integer; C, M,
 Y, K: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTableCellBorderColorCMYK(
 TableID As Long, FirstRow As Long, FirstColumn As Long,
 LastRow As Long, LastColumn As Long, BorderIndex As Long,
 C As Double, M As Double, Y As Double, K As Double) As Long

 DLL

int DPLSetTableCellBorderColorCMYK(int InstanceID, int TableID,
 int FirstRow, int FirstColumn, int LastRow, int LastColumn,
 int BorderIndex, double C, double M, double Y, double K);

Parameters

TableID A TableID returned by the CreateTable function

FirstRow The the number of the first row to set. Top row is row number 1.

FirstColumn The the number of the first column to set. Left most column is column number
1.

LastRow The number of the final row to set

LastColumn The number of the final column to set

BorderIndex 0 = All borders
1 = Left
2 = Top
3 = Right
4 = Bottom

C The cyan component of the color, a value from 0 to 1

M The magenta component of the color, a value from 0 to 1

Y The yellow component of the color, a value from 0 to 1

K The black component of the color, a value from 0 to 1

SetTableCellBorderWidth
Page layout

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Sets the width of one or more cell borders.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTableCellBorderWidth(TableID, FirstRow,
 FirstColumn, LastRow, LastColumn, BorderIndex: Integer;
 NewWidth: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTableCellBorderWidth(
 TableID As Long, FirstRow As Long, FirstColumn As Long,
 LastRow As Long, LastColumn As Long, BorderIndex As Long,
 NewWidth As Double) As Long

 DLL

int DPLSetTableCellBorderWidth(int InstanceID, int TableID, int FirstRow,
 int FirstColumn, int LastRow, int LastColumn, int BorderIndex,
 double NewWidth);

Parameters

TableID A TableID returned by the CreateTable function

FirstRow The the number of the first row to set. Top row is row number 1.

FirstColumn The the number of the first column to set. Left most column is column number
1.

LastRow The number of the final row to set

LastColumn The number of the final column to set

BorderIndex 0 = All borders
1 = Left
2 = Top
3 = Right
4 = Bottom

NewWidth The new width of the specified border

SetTableCellContent
Page layout

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Sets the content of the specified cell. The content will be drawn with the equivalent of the
DrawHTMLText function, prefixed with the necessary paragraph alignment, font size and font
color tags.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTableCellContent(TableID, RowNumber,
 ColumnNumber: Integer; HTMLText: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTableCellContent(
 TableID As Long, RowNumber As Long, ColumnNumber As Long,
 HTMLText As String) As Long

 DLL

int DPLSetTableCellContent(int InstanceID, int TableID, int RowNumber,
 int ColumnNumber, wchar_t * HTMLText);

Parameters

TableID A TableID returned by the CreateTable function

RowNumber The the row number of the cell. Top row is row number 1.

ColumnNumber The the column number of the cell. Left most column is column number 1.

HTMLText The HTML text to place into the specified cell

SetTableCellPadding
Page layout

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Sets the padding of one or more cells. The padding is the distance from the cell boundary to the
text contents. The padding is set on the side of the specified border.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTableCellPadding(TableID, FirstRow,
 FirstColumn, LastRow, LastColumn, BorderIndex: Integer;
 NewPadding: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTableCellPadding(
 TableID As Long, FirstRow As Long, FirstColumn As Long,
 LastRow As Long, LastColumn As Long, BorderIndex As Long,
 NewPadding As Double) As Long

 DLL

int DPLSetTableCellPadding(int InstanceID, int TableID, int FirstRow,
 int FirstColumn, int LastRow, int LastColumn, int BorderIndex,
 double NewPadding);

Parameters

TableID A TableID returned by the CreateTable function

FirstRow The the number of the first row to set. Top row is row number 1.

FirstColumn The the number of the first column to set. Left most column is column number
1.

LastRow The number of the final row to set

LastColumn The number of the final column to set

BorderIndex 0 = All borders
1 = Left
2 = Top
3 = Right
4 = Bottom

NewPadding The new padding on the side of the specified border

SetTableCellTextColor
Color, Page layout

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Sets the default text color of one or more cells using the RGB color space.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTableCellTextColor(TableID, FirstRow,
 FirstColumn, LastRow, LastColumn: Integer; Red, Green,
 Blue: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTableCellTextColor(
 TableID As Long, FirstRow As Long, FirstColumn As Long,
 LastRow As Long, LastColumn As Long, Red As Double,
 Green As Double, Blue As Double) As Long

 DLL

int DPLSetTableCellTextColor(int InstanceID, int TableID, int FirstRow,
 int FirstColumn, int LastRow, int LastColumn, double Red,
 double Green, double Blue);

Parameters

TableID A TableID returned by the CreateTable function

FirstRow The the number of the first row to set. Top row is row number 1.

FirstColumn The the number of the first column to set. Left most column is column number
1.

LastRow The number of the final row to set

LastColumn The number of the final column to set

Red The red component of the color, a value from 0 to 1

Green The green component of the color, a value from 0 to 1

Blue The blue component of the color, a value from 0 to 1

SetTableCellTextColorCMYK
Color, Page layout

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Sets the default text color of one or more cells using the CMYK color space.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTableCellTextColorCMYK(TableID,
 FirstRow, FirstColumn, LastRow, LastColumn: Integer; C, M, Y,
 K: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTableCellTextColorCMYK(
 TableID As Long, FirstRow As Long, FirstColumn As Long,
 LastRow As Long, LastColumn As Long, C As Double, M As Double,
 Y As Double, K As Double) As Long

 DLL

int DPLSetTableCellTextColorCMYK(int InstanceID, int TableID,
 int FirstRow, int FirstColumn, int LastRow, int LastColumn,
 double C, double M, double Y, double K);

Parameters

TableID A TableID returned by the CreateTable function

FirstRow The the number of the first row to set. Top row is row number 1.

FirstColumn The the number of the first column to set. Left most column is column number
1.

LastRow The number of the final row to set

LastColumn The number of the final column to set

C The cyan component of the color, a value from 0 to 1

M The magenta component of the color, a value from 0 to 1

Y The yellow component of the color, a value from 0 to 1

K The black component of the color, a value from 0 to 1

SetTableCellTextSize
Page layout

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Sets the default text size of one or more cells.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTableCellTextSize(TableID, FirstRow,
 FirstColumn, LastRow, LastColumn: Integer; NewTextSize: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTableCellTextSize(
 TableID As Long, FirstRow As Long, FirstColumn As Long,
 LastRow As Long, LastColumn As Long,
 NewTextSize As Double) As Long

 DLL

int DPLSetTableCellTextSize(int InstanceID, int TableID, int FirstRow,
 int FirstColumn, int LastRow, int LastColumn,
 double NewTextSize);

Parameters

TableID A TableID returned by the CreateTable function

FirstRow The the number of the first row to set. Top row is row number 1.

FirstColumn The the number of the first column to set. Left most column is column number
1.

LastRow The number of the final row to set

LastColumn The number of the final column to set

NewTextSize The new text size for the specified cell range

SetTableColumnWidth
Page layout

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Sets the width of one or more table columns.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTableColumnWidth(TableID, FirstColumn,
 LastColumn: Integer; NewWidth: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTableColumnWidth(
 TableID As Long, FirstColumn As Long, LastColumn As Long,
 NewWidth As Double) As Long

 DLL

int DPLSetTableColumnWidth(int InstanceID, int TableID, int FirstColumn,
 int LastColumn, double NewWidth);

Parameters

TableID A TableID returned by the CreateTable function

FirstColumn The the number of the first column to set. Left most column is column number
1.

LastColumn The number of the final column to set

NewWidth The new width of the specified columns

SetTableRowHeight
Page layout

Version history

This function was introduced in Quick PDF Library version 7.14.

Description

Sets the height of one or more table rows. If the row height is set to zero (default) the row will
autosize to the maximum height of the contents of all the cells in the row.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTableRowHeight(TableID, FirstRow,
 LastRow: Integer; NewHeight: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTableRowHeight(
 TableID As Long, FirstRow As Long, LastRow As Long,
 NewHeight As Double) As Long

 DLL

int DPLSetTableRowHeight(int InstanceID, int TableID, int FirstRow,
 int LastRow, double NewHeight);

Parameters

TableID A TableID returned by the CreateTable function

FirstRow The the number of the first row to set. Top row is row number 1.

LastRow The number of the final row to set

NewHeight 0 = auto size
Non-zero = the new maximum height of the row

SetTableThinBorders
Page layout

Version history

This function was introduced in Quick PDF Library version 8.14.

Description

Sets a table to use thin border lines instead of bevelled edges. These lines appear as a single pixel
width for all zoom levels.
The lines are drawn using the color specified by the Red, Green and Blue parameters.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTableThinBorders(TableID,
 ThinBorders: Integer; Red, Green, Blue: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTableThinBorders(
 TableID As Long, ThinBorders As Long, Red As Double,
 Green As Double, Blue As Double) As Long

 DLL

int DPLSetTableThinBorders(int InstanceID, int TableID, int ThinBorders,
 double Red, double Green, double Blue);

Parameters

TableID A TableID returned by the CreateTable function

ThinBorders 0 = Use bevelled edges (the default)
1 = Use thin lines

Red The red component of the color, a value from 0 to 1

Green The green component of the color, a value from 0 to 1

Blue The blue component of the color, a value from 0 to 1

Return values

0 The table line style could not be set

1 The table line style was set successfully

SetTableThinBordersCMYK
Page layout

Version history

This function was introduced in Quick PDF Library version 8.14.

Description

Sets a table to use thin border lines instead of bevelled edges. These lines appear as a single pixel
width for all zoom levels.
The lines are drawn using the color specified by the C, M, Y and K parameters.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTableThinBordersCMYK(TableID,
 ThinBorders: Integer; C, M, Y, K: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTableThinBordersCMYK(
 TableID As Long, ThinBorders As Long, C As Double,
 M As Double, Y As Double, K As Double) As Long

 DLL

int DPLSetTableThinBordersCMYK(int InstanceID, int TableID,
 int ThinBorders, double C, double M, double Y, double K);

Parameters

TableID A TableID returned by the CreateTable function

ThinBorders 0 = Use bevelled edges (the default)
1 = Use thin lines

C The cyan component of the color, a value from 0 to 1

M The magenta component of the color, a value from 0 to 1

Y The yellow component of the color, a value from 0 to 1

K The black component of the color, a value from 0 to 1

Return values

0 The table line style could not be set

1 The table line style was set successfully

SetTempFile
Miscellaneous functions

Description

Specifies a temporary file which can be used during operations such as encryption. This allows
large documents to be processed without running out of memory.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTempFile(FileName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTempFile(
 FileName As String) As Long

 DLL

int DPLSetTempFile(int InstanceID, wchar_t * FileName);

Parameters

FileName The full path and file to use as a temporary file. This path must have write access
by the running process. For example, "c:\temp\pdftemp.dat".

Return values

0 The path specified was not valid. A temporary file could not be created.

1 The temporary file could be created successfully

SetTempPath
Miscellaneous functions

Description

Sets the folder to use for storage of temporary files which are generated by functions such as
MergeFileList.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTempPath(NewPath: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTempPath(
 NewPath As String) As Long

 DLL

int DPLSetTempPath(int InstanceID, wchar_t * NewPath);

Parameters

NewPath The new folder to use. This folder must exist already, it will not be created.

Return values

0 The specified folder does not exists or does not have read/write access

1 The temporary path was set successfully

SetTextAlign
Text

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Set the alignment of subsequent text drawn with the DrawText, DrawWrappedText or
DrawMultiLineText functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextAlign(TextAlign: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextAlign(
 TextAlign As Long) As Long

 DLL

int DPLSetTextAlign(int InstanceID, int TextAlign);

Parameters

TextAlign The alignment of the text:
0 = Left aligned (default)
1 = Center aligned
2 = Right aligned
3 = Justified
4 = Force justified
5 = Last line justified
Anything else = Left aligned
"Justified" mode will not justify a line if it's the last line in a paragraph or if the line
ends with a hard-break. "Force justified" will justify every line even if it's the last
line or if it ends with a hard-break. "Last line justified" will not justify the last line
of text, this is useful when different blocks of text are drawn one after the other.

SetTextCharSpacing
Text

Description

Sets the amount of space to add between characters for subsequently drawn text.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextCharSpacing(
 CharSpacing: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextCharSpacing(
 CharSpacing As Double) As Long

 DLL

int DPLSetTextCharSpacing(int InstanceID, double CharSpacing);

Parameters

CharSpacing The amount of extra space to add between characters

SetTextColor
Text, Color

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Sets the color for any subsequently drawn text. The values of the color parameters range from 0 to
1, with 0 indicating 0% and 1 indicating 100% of the color.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextColor(Red, Green,
 Blue: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextColor(Red As Double,
 Green As Double, Blue As Double) As Long

 DLL

int DPLSetTextColor(int InstanceID, double Red, double Green, double Blue);

Parameters

Red The red component of the color

Green The green component of the color

Blue The blue component of the color

SetTextColorCMYK
Text, Color

Description

Sets the color for any subsequently drawn text. Similar to the SetTextColor function, but the color
components are specified in the CMYK color space (Cyan, Magenta, Yellow, Black). The values of
the color parameters range from 0 to 1, with 0 indicating 0% and 1 indicating 100% of the color.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextColorCMYK(C, M, Y,
 K: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextColorCMYK(C As Double,
 M As Double, Y As Double, K As Double) As Long

 DLL

int DPLSetTextColorCMYK(int InstanceID, double C, double M, double Y,
 double K);

Parameters

C The cyan component of the color

M The magenta component of the color

Y The yellow component of the color

K The black component of the color

SetTextColorSep
Text, Color

Description

Sets the color for any subsequently drawn text. Similar to the SetTextColor function, but a tint of
a separation color added with the AddSeparationColor function is used.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextColorSep(ColorName: WideString;
 Tint: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextColorSep(
 ColorName As String, Tint As Double) As Long

 DLL

int DPLSetTextColorSep(int InstanceID, wchar_t * ColorName, double Tint);

Parameters

ColorName The name of the separation color that was used with the AddSeparationColor
function

Tint The amount of color to use. 0 indicates no color (white), 1 indicates maximum
color.

Return values

0 The separation color name could not be found

1 The text color was set successfully

SetTextExtractionArea
Text, Extraction

Version history

This function was introduced in Quick PDF Library version 8.12.

Description

Sets the area for certain modes of text extraction. Any text that appears outside this area will be
excluded from the results. This function has no effect on text extraction using modes 0 to 2.
From 8.13, this function sets the text extraction area for the selected document only. It also only
affects the results of the GetPageText function.
To adjust the text extraction for the ExtractFilePageText and DAExtractPageText functions,
use the new DASetTextExtractionArea function.
The coordinate values passed into this function are specified using the units set with the
SetMeasurementUnits function and the origin set with the SetOrigin function.
The area limitation can be removed by calling this function with a value of zero for both the Width
and Height parameters.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextExtractionArea(Left, Top, Width,
 Height: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextExtractionArea(
 Left As Double, Top As Double, Width As Double,
 Height As Double) As Long

 DLL

int DPLSetTextExtractionArea(int InstanceID, double Left, double Top,
 double Width, double Height);

Parameters

Left The horizontal coordinate of the left edge of the area

Top The vertical coordinate of the top edge of the area

Width The width of the area

Height The height of the area

Return values

1 The text extraction area was set successfully

2 The text extraction area was cleared

SetTextExtractionOptions
Text, Extraction

Version history

This function was introduced in Quick PDF Library version 8.11.

Description

Sets various options that affect the text extraction functionality.

From 8.13, this function sets the text extraction options for the selected document only. It also only affects the results of the GetPageText
function.

To adjust the text extraction for the ExtractFilePageText and DAExtractPageText functions, use the new DASetTextExtractionOptions
function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextExtractionOptions(OptionID,
 NewValue: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextExtractionOptions(
 OptionID As Long, NewValue As Long) As Long

 DLL

int DPLSetTextExtractionOptions(int InstanceID, int OptionID,
 int NewValue);

Parameters

OptionID 1 = Ignore Font changes to allow grouping different blocks together
2 = Ignore Color changes to allow grouping different blocks together
3 = Ignore Text Block changes to allow grouping different blocks together
4 = Output CMYK color values
5 = Sort text blocks based on top left position
6 = Descenders from font metrics
7 = Ignore overlaps
8 = Ignore duplicates
9 = Split on double space
10 = Trim characters outside area
11 = Alternative block matching
12 = Ignore rotated text blocks
13 = Trim leading and trailing whitespace from text blocks
14 = Output non ASCII characters below Space character (0x32)
15 = Remove certain character strings such as underscore lines (see below)

NewValue For OptionID = 1, 2, 3 and 6:
0 = Use, 1 = Ignore

For OptionID = 4:
0 = Show as RGB (default), 1 = Show as CMYK

For OptionID = 5:
0 = Do not sort blocks (default), 1 = Sort blocks

For OptionID = 7, 8 and 12:
0 = Do not ignore, 1 = Ignore

OptionID = 9:
0 = Do not split on double space (default)
1 = Split on double space

OptionID = 10:
0 = Do not trim characters outside area (default)
1 = Trim characters outside area

OptionID = 11:
0 = Regular block matching
1 = Alternative block matching

OptionID = 13:
0 = Do not trim leading or trailing whitespace
1 = Trim leading and trailing whitespace

OptionID = 14
0 = Remove non ASCII chracters below space character from output (default)
1 = Output raw unfiltered ASCII characters

OptionID = 15
0 = Output text lines made with Underscore characters (default)
1 = Remove text lines made with Underscore characters

Return values

0 The OptionID or NewValue parameter was not valid

1 The text extraction option was set successfully

SetTextExtractionScaling
Text, Extraction

Version history

This function was introduced in Quick PDF Library version 8.16.

Description

Sets the scaling to use for the GetPageText function in Mode 7. This controls the number of rows
and columns in the monospaced text output.
The setting is applied to the selected document only.
To adjust the text extraction for the ExtractFilePageText and DAExtractPageText functions,
use the DASetTextExtractionScaling function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextExtractionScaling(Options: Integer;
 Horizontal, Vertical: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextExtractionScaling(
 Options As Long, Horizontal As Double,
 Vertical As Double) As Long

 DLL

int DPLSetTextExtractionScaling(int InstanceID, int Options,
 double Horizontal, double Vertical);

Parameters

Options Should always be set to 0. This indicates a scaling factor will be set for the
Horizontal and Vertical parameters, with a default value of 5 for horizontal and 8
for vertical. Smaller values stretch the text out into more rows/columns.

Horizontal The scaling to use for the horizontal axis in units defined by the Options
parameter.

Vertical The scaling to use for the vertical axis in units defined by the Options parameter.

Return values

0 The Options parameter was not valid or a value less than 1 was used for the
Horizontal or Vertical parameters.

1 Text extraction scaling was set successfully.

SetTextExtractionWordGap
Text, Extraction

Version history

This function was introduced in Quick PDF Library version 7.21.

Description

Sets the word gap ratio for the text extraction functionality.
From 8.13, this function sets the text extraction options for the selected document only. It affects
the results of any of the text extraction function that use options 3,4,5,6,7 or 8.
To adjust the text extraction for the ExtractFilePageText and DAExtractPageText functions,
use the new DASetTextExtractionWordGap function.
The word gap ratio is the maximum distance between two text blocks specified as the ratio of the
horizontal distance between the blocks to the height of the text.
The default initial value is 0.7 and smaller values will allow closer distances between words.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextExtractionWordGap(
 NewWordGap: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextExtractionWordGap(
 NewWordGap As Double) As Long

 DLL

int DPLSetTextExtractionWordGap(int InstanceID, double NewWordGap);

Parameters

NewWordGap The new WordGap ratio

Return values

1 The word gap ratio was set successfully.

SetTextHighlight
Text

Description

Sets the text highlighting mode for subsequently drawn text.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextHighlight(
 Highlight: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextHighlight(
 Highlight As Long) As Long

 DLL

int DPLSetTextHighlight(int InstanceID, int Highlight);

Parameters

Highlight The text highlighting mode to use:
0 = None
1 = Square
2 = Rounded

SetTextHighlightColor
Text, Color

Description

Sets the color used to highlight text.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextHighlightColor(Red, Green,
 Blue: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextHighlightColor(
 Red As Double, Green As Double, Blue As Double) As Long

 DLL

int DPLSetTextHighlightColor(int InstanceID, double Red, double Green,
 double Blue);

Parameters

Red A value between 0 and 1 indicating the amount of red to add to the highlight color. 0
indicates no red, 1 indicates maximum red.

Green A value between 0 and 1 indicating the amount of green to add to the highlight
color. 0 indicates no green, 1 indicates maximum green.

Blue A value between 0 and 1 indicating the amount of blue to add to the highlight color.
0 indicates no blue, 1 indicates maximum blue.

SetTextHighlightColorCMYK
Text, Color

Description

Sets the color used to highlight text, but allows the color to be specified in the CMYK color space.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextHighlightColorCMYK(C, M, Y,
 K: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextHighlightColorCMYK(
 C As Double, M As Double, Y As Double, K As Double) As Long

 DLL

int DPLSetTextHighlightColorCMYK(int InstanceID, double C, double M,
 double Y, double K);

Parameters

C A value between 0 and 1 indicating the amount of cyan to add to the highlight color.
0 indicates no cyan, 1 indicates maximum cyan.

M A value between 0 and 1 indicating the amount of magenta to add to the highlight
color. 0 indicates no magenta, 1 indicates maximum magenta.

Y A value between 0 and 1 indicating the amount of yellow to add to the highlight
color. 0 indicates no yellow, 1 indicates maximum yellow.

K A value between 0 and 1 indicating the amount of black to add to the highlight color.
0 indicates no black, 1 indicates maximum black.

SetTextHighlightColorSep
Text, Color

Description

Sets the color used to highlight text. Similar to the SetTextHighlightColor function, but a tint of a
separation color added with the AddSeparationColor function is used.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextHighlightColorSep(
 ColorName: WideString; Tint: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextHighlightColorSep(
 ColorName As String, Tint As Double) As Long

 DLL

int DPLSetTextHighlightColorSep(int InstanceID, wchar_t * ColorName,
 double Tint);

Parameters

ColorName The name of the separation color that was used with the AddSeparationColor
function

Tint The amount of color to use. 0 indicates no color (white), 1 indicates maximum
color.

Return values

0 The separation color name could not be found

1 The text highlight color was set successfully

SetTextMode
Text

Description

Specifies the mode to draw subsequent text in. Modes 4 to 7 are used to add text to the clipping
path. If one of these modes is selected and text is drawn onto the page, then subsequent items
drawn onto the page will be clipped to the outline of the text.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextMode(TextMode: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextMode(
 TextMode As Long) As Long

 DLL

int DPLSetTextMode(int InstanceID, int TextMode);

Parameters

TextMode The text mode:
0 = Filled text (default)
1 = Outline text
2 = Fill then stroke text
3 = Invisible text
4 = Fill text and add to clipping path
5 = Stroke text and add to clipping path
6 = Fill then stroke text and add to clipping path
7 = Add text to clipping path
Anything else = Filled text (default)

SetTextRise
Text

Description

Allows text to be positioned above or below the baseline. This is useful for superscript and
subscript text.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextRise(Rise: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextRise(
 Rise As Double) As Long

 DLL

int DPLSetTextRise(int InstanceID, double Rise);

Parameters

Rise The amount to raise or lower subsequent text from the baseline. Positive values
result in text that is higher than normal (superscript), negative values result in text
that is lower than normal (subscript).

SetTextScaling
Text

Description

Sets the amount to scale text in the direction the text is written. This stretches all the characters in
the font as well as the spacing between the characters.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextScaling(
 ScalePercentage: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextScaling(
 ScalePercentage As Double) As Long

 DLL

int DPLSetTextScaling(int InstanceID, double ScalePercentage);

Parameters

ScalePercentage The percentage to scale the text by. Values less than 100 will result in
narrower text. Values greater than 100 will result in wider text.

SetTextShader
Vector graphics, Path definition and drawing, Color

Version history

This function was introduced in Quick PDF Library version 7.11.

Description

Sets the text color to the specified shader for subsequently drawn text.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextShader(
 ShaderName: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextShader(
 ShaderName As String) As Long

 DLL

int DPLSetTextShader(int InstanceID, wchar_t * ShaderName);

Parameters

ShaderName The shader name that was used when the shader was created.

Return values

0 The shader could not be found

1 The text shader was setup correctly

SetTextSize
Text

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Set the size of the text to use for any subsequently draw text. The text size is always measured in
points, even if the measurement units have been changed with SetMeasurementUnits.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextSize(TextSize: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextSize(
 TextSize As Double) As Long

 DLL

int DPLSetTextSize(int InstanceID, double TextSize);

Parameters

TextSize The text size in points

Return values

0 A font has not been selected

1 The text size was set successfully

SetTextSpacing
Text

Description

Set the amount of space to add between each line for the DrawWrappedText,
GetWrappedTextHeight and DrawMultiLineText functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextSpacing(Spacing: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextSpacing(
 Spacing As Double) As Long

 DLL

int DPLSetTextSpacing(int InstanceID, double Spacing);

Parameters

Spacing The amount of space to add between each line

SetTextUnderline
Text

This function is available in the Lite Edition of Debenu Quick PDF Library, see Appendix C.

Description

Sets the underline mode for subsequently drawn text.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextUnderline(
 Underline: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextUnderline(
 Underline As Long) As Long

 DLL

int DPLSetTextUnderline(int InstanceID, int Underline);

Parameters

Underline The underline mode to use:
0 = None
1 = Single
2 = Double
3 = Strikeout
4 = Over

SetTextUnderlineColor
Text, Color

Description

Sets the color used to draw the lines for subsequently drawn text that has an underline style.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextUnderlineColor(Red, Green,
 Blue: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextUnderlineColor(
 Red As Double, Green As Double, Blue As Double) As Long

 DLL

int DPLSetTextUnderlineColor(int InstanceID, double Red, double Green,
 double Blue);

Parameters

Red A value between 0 and 1 indicating the amount of red to add to the underline color.
0 indicates no red, 1 indicates maximum red.

Green A value between 0 and 1 indicating the amount of green to add to the underline
color. 0 indicates no green, 1 indicates maximum green.

Blue A value between 0 and 1 indicating the amount of blue to add to the underline color.
0 indicates no blue, 1 indicates maximum blue.

SetTextUnderlineColorCMYK
Text, Color

Description

Sets the color used to draw the lines for subsequently drawn text that has an underline style, but
allows the color to be set using the CMYK color space.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextUnderlineColorCMYK(C, M, Y,
 K: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextUnderlineColorCMYK(
 C As Double, M As Double, Y As Double, K As Double) As Long

 DLL

int DPLSetTextUnderlineColorCMYK(int InstanceID, double C, double M,
 double Y, double K);

Parameters

C A value between 0 and 1 indicating the amount of cyan to add to the underline color.
0 indicates no cyan, 1 indicates maximum cyan.

M A value between 0 and 1 indicating the amount of magenta to add to the underline
color. 0 indicates no magenta, 1 indicates maximum magenta.

Y A value between 0 and 1 indicating the amount of yellow to add to the underline
color. 0 indicates no yellow, 1 indicates maximum yellow.

K A value between 0 and 1 indicating the amount of black to add to the underline
color. 0 indicates no black, 1 indicates maximum black.

SetTextUnderlineColorSep
Text, Color

Description

Sets the color used to draw the lines for subsequently drawn text that has an underline style.
Similar to the SetTextUnderlineColor function, but a tint of a separation color added with the
AddSeparationColor function is used.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextUnderlineColorSep(
 ColorName: WideString; Tint: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextUnderlineColorSep(
 ColorName As String, Tint As Double) As Long

 DLL

int DPLSetTextUnderlineColorSep(int InstanceID, wchar_t * ColorName,
 double Tint);

Parameters

ColorName The name of the separation color that was used with the AddSeparationColor
function

Tint The amount of color to use. 0 indicates no color (white), 1 indicates maximum
color.

Return values

0 The separation color name could not be found

1 The text underline color was set successfully

SetTextUnderlineCustomDash
Text

Version history

This function was introduced in Quick PDF Library version 8.14.

Description

Use this function to apply a dashed effect to the underlines added to subsequently drawn text.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextUnderlineCustomDash(
 DashPattern: WideString; DashPhase: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextUnderlineCustomDash(
 DashPattern As String, DashPhase As Double) As Long

 DLL

int DPLSetTextUnderlineCustomDash(int InstanceID, wchar_t * DashPattern,
 double DashPhase);

Parameters

DashPattern The dash pattern to use, for example "10 5 0 5".

DashPhase The dash phase. Usually set to zero.

SetTextUnderlineDash
Text

Description

Use this function to apply a dashed effect to the underlines added to subsequently drawn text.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextUnderlineDash(DashOn,
 DashOff: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextUnderlineDash(
 DashOn As Double, DashOff As Double) As Long

 DLL

int DPLSetTextUnderlineDash(int InstanceID, double DashOn, double DashOff);

Parameters

DashOn A factor to use for the solid parts of the dashed line. If a factor of 1 is used then the
solid parts of the line will be the same width as the line. A factor of 3 would result in
the solid parts of the dashed line being three times longer than the width of the line.

DashOff A factor to use for the invisible parts of the dashed line. For example, if a factor of 2
is used then the invisible parts of the line will be twice as wide as the width of the
line.

SetTextUnderlineDistance
Text

Version history

This function was introduced in Quick PDF Library version 8.14.

Description

Sets the distance of the underlines from the text for subsequently drawn text that has an underline
style.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextUnderlineDistance(
 UnderlineDistance: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextUnderlineDistance(
 UnderlineDistance As Double) As Long

 DLL

int DPLSetTextUnderlineDistance(int InstanceID, double UnderlineDistance);

Parameters

UnderlineDistance The distance from the text to the underline

SetTextUnderlineWidth
Text

Version history

This function was introduced in Quick PDF Library version 8.14.

Description

Sets the width of the underlines for subsequently drawn text that has an underline style.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextUnderlineWidth(
 UnderlineWidth: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextUnderlineWidth(
 UnderlineWidth As Double) As Long

 DLL

int DPLSetTextUnderlineWidth(int InstanceID, double UnderlineWidth);

Parameters

UnderlineWidth The width of the underline to use

SetTextWordSpacing
Text

Description

Sets the amount of space to add between words for subsequently drawn text.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTextWordSpacing(
 WordSpacing: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTextWordSpacing(
 WordSpacing As Double) As Long

 DLL

int DPLSetTextWordSpacing(int InstanceID, double WordSpacing);

Parameters

WordSpacing The amount of extra space to add between words

SetTransparency
Vector graphics, Text, Page layout

Description

Sets the transparency for all subsequently drawn text and graphics.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetTransparency(
 Transparency: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetTransparency(
 Transparency As Long) As Long

 DLL

int DPLSetTransparency(int InstanceID, int Transparency);

Parameters

Transparency The amount of transparency to apply
0 = No transparency
50 = 50% transparency
100 = Invisible

Return values

0 The transparency specified was out of range

1 The transparency was set successfully

SetViewerPreferences
Document properties

Description

Sets the viewer preferences for the document.

For Option=7 to take effect, the initial page mode should be set to Full Screen using the SetPageMode
function with the NewPageMode parameter set to 3.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetViewerPreferences(Option,
 NewValue: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetViewerPreferences(
 Option As Long, NewValue As Long) As Long

 DLL

int DPLSetViewerPreferences(int InstanceID, int Option, int NewValue);

Parameters

Option 1 = Hide toolbar
2 = Hide menubar
3 = Hide window user interface
4 = Resize window to first page size
5 = Center window
6 = Display document title
7 = Page mode after full screen
8 = Predominant text reading order
9 = Display boundary for viewing
10 = Clipping boundary for viewing
11 = Display voundary for printing
12 = Clipping boundary for printing
13 = Default print dialog: scaling
14 = Default print dialog: duplex
15 = Default print dialog: auto paper tray
16 = Default print dialog: number of copies

NewValue For Option 1 to 6:
0=No, 1=Yes

For Option 7:
0=Normal view, 1=Show the outlines pane, 2=Show the thumbnails pane, 3=Show the layers
pane

For Option 8:
0=Left to right, 1=Right to left

For Option 9 to 12:
0=MediaBox, 1=CropBox, 2=BleedBox, 3=TrimBox, 4=ArtBox

For Option 13:
0=None, 1=Application default

For Option 14:
0=Simplex, 1=Duplex flip short edge, 2=Duplex flip long edge

For Option 15:
0=No, 1=Yes

For Option 16:
Any positive number

Return values

0 The viewer preferences could not be set

1 The viewer preferences were set successfully

SetXFAFormFieldAccess
Form fields

Description

Sets the access flags of the specified XFA form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetXFAFormFieldAccess(
 XFAFieldName: WideString; NewAccess: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetXFAFormFieldAccess(
 XFAFieldName As String, NewAccess As Long) As Long

 DLL

int DPLSetXFAFormFieldAccess(int InstanceID, wchar_t * XFAFieldName,
 int NewAccess);

Parameters

XFAFieldName The name of the XFA field to work with

NewAccess 1 = Non interactive
2 = Open
3 = Protected
4 = Read only

SetXFAFormFieldBorderColor
Form fields, Color

Description

Sets the border color of the specified XFA form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetXFAFormFieldBorderColor(
 XFAFieldName: WideString; Red, Green, Blue: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetXFAFormFieldBorderColor(
 XFAFieldName As String, Red As Double, Green As Double,
 Blue As Double) As Long

 DLL

int DPLSetXFAFormFieldBorderColor(int InstanceID, wchar_t * XFAFieldName,
 double Red, double Green, double Blue);

Parameters

XFAFieldName The name of the XFA field to work with

Red The red component of the color, which should be a value between 0 and 1

Green The green component of the color, which should be a value between 0 and 1

Blue The blue component of the color, which should be a value between 0 and 1

SetXFAFormFieldBorderPresence
Form fields

Description

Sets the border style of the specified XFA form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetXFAFormFieldBorderPresence(
 XFAFieldName: WideString; NewPresence: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetXFAFormFieldBorderPresence(
 XFAFieldName As String, NewPresence As Long) As Long

 DLL

int DPLSetXFAFormFieldBorderPresence(int InstanceID,
 wchar_t * XFAFieldName, int NewPresence);

Parameters

XFAFieldName The name of the XFA field to work with

NewPresence 1 = Visible
2 = Invisible
3 = Hidden

SetXFAFormFieldBorderWidth
Form fields

Description

Sets the border width of the specified XFA form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetXFAFormFieldBorderWidth(
 XFAFieldName: WideString; BorderWidth: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetXFAFormFieldBorderWidth(
 XFAFieldName As String, BorderWidth As Double) As Long

 DLL

int DPLSetXFAFormFieldBorderWidth(int InstanceID, wchar_t * XFAFieldName,
 double BorderWidth);

Parameters

XFAFieldName The name of the XFA field to work with

BorderWidth The desired width of the border

SetXFAFormFieldValue
Form fields

Description

Sets the value of the specified XFA form field.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetXFAFormFieldValue(XFAFieldName,
 NewValue: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetXFAFormFieldValue(
 XFAFieldName As String, NewValue As String) As Long

 DLL

int DPLSetXFAFormFieldValue(int InstanceID, wchar_t * XFAFieldName,
 wchar_t * NewValue);

Parameters

XFAFieldName The name of the XFA field to work with

NewValue The new value for the XFA field

SetXFAFromString
Form fields

Version history

This function was introduced in Quick PDF Library version 8.16.

Description

Sets the document's XFA form data to the specified XML string.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetXFAFromString(const Source: AnsiString;
 Options: Integer): Integer;

 DLL

int DPLSetXFAFromString(int InstanceID, char * Source, int Options);

Parameters

Source The new XML string to store as the XFA form data.

Options Reserved for future use. Should be set to 0.

Return values

0 The XFA form data could not be set, this usually means the document does not have
an AcroForm dictionary.

1 The XFA form data was set successfully.

SetupCustomPrinter
Rendering and printing

Description

Changes the properties of a custom printer created with the NewCustomPrinter function.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SetupCustomPrinter(
 CustomPrinterName: WideString; Setting, NewValue: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SetupCustomPrinter(
 CustomPrinterName As String, Setting As Long,
 NewValue As Long) As Long

 DLL

int DPLSetupCustomPrinter(int InstanceID, wchar_t * CustomPrinterName,
 int Setting, int NewValue);

Parameters

CustomPrinterName A custom printer name, as returned by the NewCustomPrinter function

Setting 0 = Use Paper length and height and not Paper size
1 = Paper size
2 = Paper length
3 = Paper width
4 = Copies
5 = Print quality
6 = Color
7 = Duplex
8 = Collate
9 = Default source (paper trays / bins)
10 = Media type
11 = Orientation

NewValue For custom paper size
0 Uses length and height to specify custom size in tenths or millimetres

For paper size:
1 to 68, DMPAPER_XXX (Win32 API DEVMODE data structure)

For paper height and width:
Size of paper in tenths of millimetres

For copies:
Number of copies

For print quality:
1 = high, 2 = medium, 3 = low, 4 = draft
or an exact DPI, for example 600

For color:
1 = monochrome, 2 = color

For duplex:
1 = simplex, 2 = vertical duplex, 3 = horizontal duplex

For collate:
0 = no, 1 = yes

For default source:
1 to 15, DMBIN_XXX (Win32 API DEVMODE data structure)

256 and higher for custom bins / paper trays, see the GetPrinterBins function

For media type:
1 = standard, 2 = transparency, 3 = glossy
256 and higher for device-specific media

For orientation:
1 = portrait, 2 = landscape

Return values

0 The custom printer could not be found, or the Settings or NewValue parameters were invalid

1 The custom printer settings were changed successfully

SignFile
Security and Signatures

Version history

This function was introduced in Quick PDF Library version 7.12.

Description

Applies a digital signature to a PDF document on disk.
The signing identity must be in PKCS#12 format containing a certificate and private key.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SignFile(InputFileName, OpenPassword,
 SignatureFieldName, OutputFileName, PFXFileName, PFXPassword, Reason,
 Location, ContactInfo: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SignFile(
 InputFileName As String, OpenPassword As String,
 SignatureFieldName As String, OutputFileName As String,
 PFXFileName As String, PFXPassword As String,
 Reason As String, Location As String,
 ContactInfo As String) As Long

 DLL

int DPLSignFile(int InstanceID, wchar_t * InputFileName,
 wchar_t * OpenPassword, wchar_t * SignatureFieldName,
 wchar_t * OutputFileName, wchar_t * PFXFileName,
 wchar_t * PFXPassword, wchar_t * Reason, wchar_t * Location,
 wchar_t * ContactInfo);

Parameters

InputFileName The path and file name of the input PDF to sign.

OpenPassword The optional password to open the input PDF if it is encrypted

SignatureFieldName The name of the signature field to sign. If a field with this name does not exist it will be created.
This field cannot be blank.

OutputFileName The path and file name of the signed PDF that should be created. This should be different to
InputFileName.

PFXFileName The path and name of the PKCS#12 certificate/private key file (.pfx file).

PFXPassword The password to open the PFX file.

Reason An optional string indicating the reason for signing.

Location An optional string indicating the location that the signing was done.

ContactInfo An optional string indicating the contact information of the signer.

Return values

1 The file was signed successfully

2 Input PDF not found

3 Input PDF cannot be read

4 Input PDF password incorrect

5 Certificate file not found

6 Certificate file is invalid

7 Incorrect certificate password

8 Unknown certificate format

9 No private key found in certificate file

10 Could not write output file

11 Could not apply signature

12 The signature field name was blank

SplitPageText
Page manipulation

Description

Splits the text and graphics on the current page into two layers. The graphics are placed into the
bottom layer with the text in the top layer.

Syntax

 Delphi

function TDebenuPDFLibrary1113.SplitPageText(Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::SplitPageText(
 Options As Long) As Long

 DLL

int DPLSplitPageText(int InstanceID, int Options);

Parameters

Options This parameter is reserved for future use and should be set to zero

StartPath
Vector graphics, Path definition and drawing

Description

Starts a multi-segment path.

Syntax

 Delphi

function TDebenuPDFLibrary1113.StartPath(StartX, StartY: Double): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::StartPath(StartX As Double,
 StartY As Double) As Long

 DLL

int DPLStartPath(int InstanceID, double StartX, double StartY);

Parameters

StartX Horizontal co-ordinate of the point where the curve should start

StartY Vertical co-ordinate of the point where the curve should start

StoreCustomDataFromFile
Document properties

Description

Saves custom data from a file into the PDF under a key name. This data can later be retrieved
using RetrieveCustomDataToString or RetrieveCustomDataToFile. The storage type (string,
stream or compressed stream) and location (Document Information Dictionary or Document
Catalog) can be set. If the location is the Document Catalog any storage type can be used, but the
key must have a special prefix assigned to you by Adobe. If the location is the Document
Information Dictionary any key apart from the standard keys can be used, but only strings can be
used.

Syntax

 Delphi

function TDebenuPDFLibrary1113.StoreCustomDataFromFile(Key,
 FileName: WideString; Location, Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::StoreCustomDataFromFile(
 Key As String, FileName As String, Location As Long,
 Options As Long) As Long

 DLL

int DPLStoreCustomDataFromFile(int InstanceID, wchar_t * Key,
 wchar_t * FileName, int Location, int Options);

Parameters

Key The key to store the data under. If the location is the Document Information
Dictionary then the key cannot be "Author", "Title", "Subject", "Keywords",
"Creator" or "Producer". Any other key can be used but keys should be chosen with
care so they make sense to the user. If the location is the Document Catalog then
the key must have a special prefix assigned to you by Adobe to avoid conflicts with
other software.

FileName The path and name of the file containing the data to store in the PDF under the
specified key.

Location 1 = Store the data in the Document Information Dictionary
2 = Store the data in the Document Catalog

Options 0 = Store the data as a string (the only option available if the location is the
Document Information Dictionary)
1 = Store the data in a stream
2 = Store the data in a compressed stream

Return values

0 The file containing the data could not be opened, or the Key parameter was invalid

1 The data was stored successfully

StoreCustomDataFromString
Document properties

Version history

This function was renamed in Quick PDF Library version 7.11.
The function name in earlier versions was StoreCustomData.

Description

Saves custom data into the PDF under a key name. This data can later be retrieved using the
RetrieveCustomDataToString, RetrieveCustomDataToVariant or
RetrieveCustomDataToFile functions. The storage type (string, stream or compressed stream)
and location (Document Information Dictionary or Document Catalog) can be set. If the location is
the Document Catalog any storage type can be used, but the key must have a special prefix
assigned to you by Adobe. If the location is the Document Information Dictionary any key apart
from the standard keys can be used, but only strings can be used.

Syntax

 Delphi

function TDebenuPDFLibrary1113.StoreCustomDataFromString(const Key,
 NewValue: AnsiString; Location, Options: Integer): Integer;

 DLL

int DPLStoreCustomDataFromString(int InstanceID, char * Key,
 char * NewValue, int Location, int Options);

Parameters

Key The key to store the data under. If the location is the Document Information
Dictionary then the key cannot be "Author", "Title", "Subject", "Keywords",
"Creator" or "Producer". Any other key can be used but keys should be chosen
with care so they make sense to the user. If the location is the Document Catalog
then the key must have a special prefix assigned to you by Adobe to avoid
conflicts with other software.

NewValue The new value for the data

Location 1 = Store the data in the Document Information Dictionary
2 = Store the data in the Document Catalog

Options 0 = Store the data as a string (the only option available if the location is the
Document Information Dictionary)
1 = Store the data in a stream
2 = Store the data in a compressed stream

Return values

0 The data could not be stored because the key name was a reserved name

1 The data was stored successfully

StoreCustomDataFromVariant
Document properties

Description

This function saves custom data, provided as a variant byte array, into the PDF under a key name.
This data can later be retrieved using RetrieveCustomDataToVariant. The storage type (string,
stream or compressed stream) and location (Document Information Dictionary or Document
Catalog) can be set. If the location is the Document Catalog any storage type can be used, but the
key must have a special prefix assigned to you by Adobe. If the location is the Document
Information Dictionary any key apart from the standard keys can be used, but only strings can be
used.

Syntax

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::StoreCustomDataFromVariant(
 Key As String, NewValue As Variant, Location As Long,
 Options As Long) As Long

Parameters

Key The key to store the data under. If the location is the Document Information
Dictionary then the key cannot be "Author", "Title", "Subject", "Keywords",
"Creator" or "Producer". Any other key can be used but keys should be chosen
with care so they make sense to the user. If the location is the Document Catalog
then the key must have a special prefix assigned to you by Adobe to avoid
conflicts with other software.

NewValue A variant byte array containing the data to store in the PDF

Location 1 = Store the data in the Document Information Dictionary
2 = Store the data in the Document Catalog

Options 0 = Store the data as a string (the only option available if the location is the
Document Information Dictionary)
1 = Store the data in a stream
2 = Store the data in a compressed stream

Return values

0 The Location parameter was invalid

1 The custom data was stored successfully

StringResultLength
Miscellaneous functions

Description

Returns the character length of the most recent string returned from the library by all functions
that return Unicode (16-bit) strings.
The value returned is the number of 16-bit characters. So the total byte length will be twice that
value.
A few functions return 8-bit strings, the AnsiStringResultLength function must be used to obtain
the data length for those functions.

Syntax

 DLL

int DPLStringResultLength(int InstanceID);

TestTempPath
Miscellaneous functions

Description

Tests that folder used for storage of temporary files has read/write access by the process running
the library.

Syntax

 Delphi

function TDebenuPDFLibrary1113.TestTempPath: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::TestTempPath As Long

 DLL

int DPLTestTempPath(int InstanceID);

Return values

0 The temporary path does not have read/write access

1 The temporary path is valid

TransformFile
Document manipulation, Miscellaneous functions

Version history

This function was introduced in Quick PDF Library version 9.11.

Description

Applies a transformation to a file allowing objects to be renumbered and reordered.
In certain cases this can result in a more compact cross reference table reducing the size of the
PDF.

Syntax

 Delphi

function TDebenuPDFLibrary1113.TransformFile(InputFileName, Password,
 OutputFileName: WideString; TransformType, Options: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::TransformFile(
 InputFileName As String, Password As String,
 OutputFileName As String, TransformType As Long,
 Options As Long) As Long

 DLL

int DPLTransformFile(int InstanceID, wchar_t * InputFileName,
 wchar_t * Password, wchar_t * OutputFileName,
 int TransformType, int Options);

Parameters

InputFileName The path and file name of the input PDF to transform.

Password The optional password to open the input PDF if it is encrypted

OutputFileName The path and file name of the signed PDF that should be created. This
should be different to InputFileName.

TransformType 1 = Renumber all objects writing them out in order
2 = Same as 1 but uses an xref stream

Options Reserved for future use, should be set to zero.

Return values

1 Success

2 Input PDF not found

3 Input PDF cannot be read

4 Input PDF password incorrect

5 Could not write output file

UnlockKey
Miscellaneous functions

Description

Unlocks the library. The library must be unlocked using a registration key before it can be used.

Syntax

 Delphi

function TDebenuPDFLibrary1113.UnlockKey(LicenseKey: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::UnlockKey(
 LicenseKey As String) As Long

 DLL

int DPLUnlockKey(int InstanceID, wchar_t * LicenseKey);

Parameters

LicenseKey The registration key

Return values

0 The library could not be unlocked

1 The library was unlocked successfully

Unlocked
Miscellaneous functions

Description

Determine if the library has been unlocked. If the library has not been unlocked it cannot be used.

Syntax

 Delphi

function TDebenuPDFLibrary1113.Unlocked: Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::Unlocked As Long

 DLL

int DPLUnlocked(int InstanceID);

Return values

0 The library has not been unlocked

1 The library has been unlocked

UpdateAndFlattenFormField
Form fields, Page layout

Version history

This function was introduced in Quick PDF Library version 9.11.

Description

Use this function to draw the visual appearance onto the page it is associated with. The form field
will then be removed from the document and only it's appearance will remain - it will no longer be
an interactive field.
If the field is flattened successfully the field index of subsequent form fields will be decreased by 1.
The appearance stream of the form field will be generated before the form field is flattened. This
behaviour is the same as the FlattenFormField function before version 9.11.

Syntax

 Delphi

function TDebenuPDFLibrary1113.UpdateAndFlattenFormField(
 Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::UpdateAndFlattenFormField(
 Index As Long) As Long

 DLL

int DPLUpdateAndFlattenFormField(int InstanceID, int Index);

Parameters

Index The index of the form field to work with. The first form field has an index of 1.

Return values

0 The form field could not be found or it was not possible to flatten the form field

1 The form field was flattened successfully

UpdateAppearanceStream
Form fields

Description

Generates an appearance stream for the form field. Appearance streams can be generated for text,
pushbutton and choice form fields.

Syntax

 Delphi

function TDebenuPDFLibrary1113.UpdateAppearanceStream(
 Index: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::UpdateAppearanceStream(
 Index As Long) As Long

 DLL

int DPLUpdateAppearanceStream(int InstanceID, int Index);

Parameters

Index The index of the form field to work with. The first form field has an index of 1.

Return values

0 The form field could not be found or an appearance stream could not be created for
the specified field

1 The appearance stream for the specified form field was created successfully

UpdateTrueTypeSubsettedFont
Text, Fonts

Version history

This function was introduced in Quick PDF Library version 10.12.

Description

Updates the selected font with a new subset.
This can only be done if the font was originally created using AddTrueTypeSubsettedFont using
Options 2, 3, 4 or 5.

Syntax

 Delphi

function TDebenuPDFLibrary1113.UpdateTrueTypeSubsettedFont(
 SubsetChars: WideString): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::UpdateTrueTypeSubsettedFont(
 SubsetChars As String) As Long

 DLL

int DPLUpdateTrueTypeSubsettedFont(int InstanceID, wchar_t * SubsetChars);

Parameters

SubsetChars The new list of characters to include in the font subset in addition to the
existing characters.

Return values

0 Could not update the font subset

1 Success

UseKerning
Text, Fonts

Description

Specifies whether to use kerning for text subsequently drawn using the DrawText and
DrawRotatedText functions.

Syntax

 Delphi

function TDebenuPDFLibrary1113.UseKerning(Kern: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::UseKerning(Kern As Long) As Long

 DLL

int DPLUseKerning(int InstanceID, int Kern);

Parameters

Kern 0 = Do not use kerning
1 = Use kerning
2 = Do not attempt to load kerning from TrueType fonts subsequently added to the
document

UseUnsafeContentStreams
Content Streams and Optional Content Groups

Version history

This function was renamed in Quick PDF Library version 8.11.
The function name in earlier versions was UseUnsafeLayers.

Description

A page in a PDF document has one or more content stream parts that together contain all the PDF
page description commands for the page.
This function specifies whether content stream parts that were not created by Quick PDF Library
should be automatically re-used or not.

Syntax

 Delphi

function TDebenuPDFLibrary1113.UseUnsafeContentStreams(
 SafetyLevel: Integer): Integer;

 ActiveX

Function DebenuPDFLibrary1113.PDFLibrary::UseUnsafeContentStreams(
 SafetyLevel As Long) As Long

 DLL

int DPLUseUnsafeContentStreams(int InstanceID, int SafetyLevel);

Parameters

SafetyLevel 0 = Only re-use existing Quick PDF Library content stream parts (Default)
1 = Re-use any content stream part

Return values

0 The SafetyLevel parameter was out of range

1 The safety level was set successfully

Appendix A: Supported HTML tags
A limited HTML subset is supported:

 to break onto a new line
 or for bold
<i> or for italics
<sup> and <sub> for superscript/subscript.
<u> for underline
<u style="double"> for double underline
<u style="strikeout"> for strikeout (a line drawn through the text)
<u style="over"> for a line drawn above the text
<p align="left"> for left aligned paragraphs
<p align="center"> for centered paragraphs
<p align="justified"> for justified paragraphs
, and for ordered/unordered lists

<font
size="__"
color="__"
background="__"
roundback="yes/no"
mode="__"
outlinecolor="__"
outlinewidth="__pt"
>

The font size can be specified as a standard HTML size, or a point size such as "11.5pt",
the outline width must be specified in points, for example "1.5pt".

Text and background colors can be specified in RGB using the standard HTML
hexadecimal notation, for example "#3A498C". CMYK colors can be specified using eight
hexadecimal values and omitting the #, for example "5C238F02".

If the roundback attribute is "yes", the background rectangles will be drawn with rounded
edges.

Appendix B: Function groups
Annotations and hotspot links

AddArcToPath
AddFreeTextAnnotation
AddLinkToDestination
AddLinkToEmbeddedFile
AddLinkToFile
AddLinkToFileDest
AddLinkToFileEx
AddLinkToJavaScript
AddLinkToLocalFile
AddLinkToPage
AddLinkToWeb
AddNoteAnnotation
AddRelativeLinkToFile
AddRelativeLinkToFileDest
AddRelativeLinkToFileEx
AddRelativeLinkToLocalFile
AddSVGAnnotationFromFile
AddSWFAnnotationFromFile
AddStampAnnotation
AddStampAnnotationFromImage
AddStampAnnotationFromImageID
AddTextMarkupAnnotation
AddU3DAnnotationFromFile
AnnotationCount
AttachAnnotToForm
CheckPageAnnots
CloneOutlineAction
DeleteAnnotation
DrawPostScriptXObject
FlattenAnnot
GetActionDest
GetActionType
GetActionURL
GetAnnotActionID
GetAnnotDblProperty
GetAnnotDest
GetAnnotEmbeddedFileName
GetAnnotEmbeddedFileToFile
GetAnnotEmbeddedFileToString
GetAnnotIntProperty
GetAnnotQuadCount
GetAnnotQuadPoints
GetAnnotSoundToFile
GetAnnotSoundToString
GetAnnotStrProperty
GetBaseURL
GetDestName
GetDestPage
GetDestType
GetDestValue
GetFormFieldActionID
GetNamedDestination
GetOutlineActionID
GetTabOrderMode
IsAnnotFormField
NewDestination

Annotations and hotspot links continued...

NewNamedDestination
SetActionURL
SetAnnotBorderColor
SetAnnotBorderStyle
SetAnnotContents
SetAnnotDblProperty
SetAnnotIntProperty
SetAnnotQuadPoints
SetAnnotRect
SetAnnotStrProperty
SetBaseURL
SetDestProperties
SetDestValue
SetMarkupAnnotStyle
SetOutlineNamedDestination
SetTabOrderMode

Barcodes

DrawBarcode
DrawDataMatrixSymbol
DrawIntelligentMailBarcode
DrawPDF417Symbol
DrawPDF417SymbolEx
DrawQRCode

Color

AddSeparationColor
DAGetTextBlockColor
DAGetTextBlockColorType
GetFormFieldBackgroundColor
GetFormFieldBackgroundColorType
GetFormFieldBorderColor
GetFormFieldBorderColorType
GetFormFieldColor
GetOutlineColor
GetPageColorSpaces
GetPageJavaScript
GetTextBlockColor
GetTextBlockColorType
ImageFillColor
NewRGBAxialShader
NewTilingPatternFromCapturedPage
SetAnnotBorderColor
SetFillColor
SetFillColorCMYK
SetFillColorSep
SetFillShader
SetFillTilingPattern
SetFormFieldBackgroundColor
SetFormFieldBackgroundColorCMYK
SetFormFieldBackgroundColorGray
SetFormFieldBackgroundColorSep
SetFormFieldBorderColor
SetFormFieldBorderColorCMYK

Color continued...

SetFormFieldBorderColorGray
SetFormFieldBorderColorSep
SetFormFieldColor
SetFormFieldColorCMYK
SetFormFieldColorSep
SetImageMaskCMYK
SetLineColor
SetLineColorCMYK
SetLineColorSep
SetLineShader
SetMarkupAnnotStyle
SetOutlineColor
SetPNGTransparencyColor
SetTableBorderColor
SetTableBorderColorCMYK
SetTableCellBackgroundColor
SetTableCellBackgroundColorCMYK
SetTableCellBorderColor
SetTableCellBorderColorCMYK
SetTableCellTextColor
SetTableCellTextColorCMYK
SetTextColor
SetTextColorCMYK
SetTextColorSep
SetTextHighlightColor
SetTextHighlightColorCMYK
SetTextHighlightColorSep
SetTextShader
SetTextUnderlineColor
SetTextUnderlineColorCMYK
SetTextUnderlineColorSep
SetXFAFormFieldBorderColor

Content Streams and Optional Content
Groups

BalanceContentStream
CombineContentStreams
ContentStreamCount
ContentStreamSafe
DeleteContentStream
DeleteOptionalContentGroup
EditableContentStream
EncapsulateContentStream
GetContentStreamToString
GetContentStreamToVariant
GetOptionalContentConfigCount
GetOptionalContentConfigLocked
GetOptionalContentConfigOrderCount
GetOptionalContentConfigOrderItemID
GetOptionalContentConfigOrderItemLabe
lGetOptionalContentConfigOrderItemLevel
GetOptionalContentConfigOrderItemType
GetOptionalContentConfigState
GetOptionalContentGroupID
GetOptionalContentGroupName

Content Streams and Optional Content
Groups continued...

GetOptionalContentGroupPrintable
GetOptionalContentGroupVisible
MoveContentStream
NewContentStream
NewOptionalContentGroup
OptionalContentGroupCount
RemoveSharedContentStreams
SelectContentStream
SetCapturedPageOptional
SetCapturedPageTransparencyGroup
SetContentStreamFromString
SetContentStreamFromVariant
SetContentStreamOptional
SetFormFieldOptional
SetImageOptional
SetOptionalContentConfigLocked
SetOptionalContentConfigState
SetOptionalContentGroupName
SetOptionalContentGroupPrintable
SetOptionalContentGroupVisible
UseUnsafeContentStreams

Direct access functionality

DAAppendFile
DACapturePage
DACapturePageEx
DACloseFile
DADrawCapturedPage
DADrawRotatedCapturedPage
DAEmbedFileStreams
DAExtractPageText
DAExtractPageTextBlocks
DAFindPage
DAGetAnnotationCount
DAGetFormFieldCount
DAGetFormFieldTitle
DAGetFormFieldValue
DAGetImageDataToString
DAGetImageDataToVariant
DAGetImageDblProperty
DAGetImageIntProperty
DAGetImageListCount
DAGetInformation
DAGetObjectCount
DAGetObjectToString
DAGetObjectToVariant
DAGetPageBox
DAGetPageContentToString
DAGetPageContentToVariant
DAGetPageCount
DAGetPageHeight
DAGetPageImageList
DAGetPageWidth
DAGetTextBlockAsString

Direct access functionality continued...

DAGetTextBlockBound
DAGetTextBlockCharWidth
DAGetTextBlockColor
DAGetTextBlockColorType
DAGetTextBlockCount
DAGetTextBlockFontName
DAGetTextBlockFontSize
DAGetTextBlockText
DAHasPageBox
DAHidePage
DAMovePage
DANewPage
DANewPages
DANormalizePage
DAOpenFile
DAOpenFileReadOnly
DAOpenFromStream
DAPageRotation
DAReleaseImageList
DAReleaseTextBlocks
DARemoveUsageRights
DARenderPageToDC
DARenderPageToFile
DARenderPageToStream
DARenderPageToString
DARenderPageToVariant
DARotatePage
DASaveAsFile
DASaveCopyToStream
DASaveImageDataToFile
DASaveToStream
DASetInformation
DASetPageBox
DASetPageLayout
DASetPageMode
DASetPageSize
DASetTextExtractionArea
DASetTextExtractionOptions
DASetTextExtractionScaling
DASetTextExtractionWordGap
DAShiftedHeader

Document management

AppendToFile
AppendToString
AppendToVariant
BalancePageTree
DAAppendFile
DAOpenFile
DAOpenFileReadOnly
DAOpenFromStream
DASaveAsFile
DASaveCopyToStream
DASaveToStream
DAShiftedHeader

Document management continued...

DecryptFile
DocumentCount
GetCanvasDC
GetCanvasDCEx
GetDocumentFileName
GetDocumentID
GetDocumentRepaired
InsertPages
LoadFromCanvasDC
LoadFromFile
LoadFromStream
LoadFromString
LoadFromVariant
MovePage
NewDestination
NewDocument
RemoveDocument
SaveToFile
SaveToStream
SaveToString
SaveToVariant
SelectDocument
SelectedDocument
SetAppendInputFromString
SetAppendInputFromVariant
SetFindImagesMode

Document manipulation

CheckFileCompliance
DAEmbedFileStreams
DANormalizePage
DARemoveUsageRights
ExtractFilePages
ExtractFilePagesEx
ExtractPageRanges
LinearizeFile
MergeDocument
MergeFileList
MergeFileListFast
MergeFiles
MergeStreams
RemoveUsageRights
ReplaceFonts
TransformFile

Document properties

AddEmbeddedFile
AddFileAttachment
AddGlobalJavaScript
AddLinkToEmbeddedFile
AnalyseFile
CompressContent
CompressFonts
CompressImages

Document properties continued...

DAGetInformation
DAGetPageCount
DASetInformation
DASetPageLayout
DASetPageMode
Decrypt
DeleteAnalysis
DocJavaScriptAction
EmbedFile
EmbeddedFileCount
EncryptionAlgorithm
EncryptionStatus
EncryptionStrength
FindFonts
FindImages
GetAnalysisInfo
GetBaseURL
GetCatalogInformation
GetCustomInformation
GetCustomKeys
GetDocJavaScript
GetDocumentFileSize
GetDocumentIdentifier
GetDocumentMetadata
GetDocumentRepaired
GetDocumentResourceList
GetEmbeddedFileContentToFile
GetEmbeddedFileContentToStream
GetEmbeddedFileContentToString
GetEmbeddedFileContentToVariant
GetEmbeddedFileID
GetEmbeddedFileIntProperty
GetEmbeddedFileStrProperty
GetEncryptionFingerprint
GetFileMetadata
GetGlobalJavaScript
GetInformation
GetMaxObjectNumber
GetNamedDestination
GetOpenActionDestination
GetOpenActionJavaScript
GetPageLayout
GetPageMode
GetViewerPreferences
GlobalJavaScriptCount
GlobalJavaScriptPackageName
HasFontResources
ImageCount
IsLinearized
NewPostScriptXObject
PageCount
RemoveCustomInformation
RemoveEmbeddedFile
RemoveGlobalJavaScript
RemoveOpenAction
RemoveUsageRights

Document properties continued...

RemoveXFAEntries
RetrieveCustomDataToFile
RetrieveCustomDataToString
RetrieveCustomDataToVariant
SecurityInfo
SetBaseURL
SetCatalogInformation
SetCustomInformation
SetDecodeMode
SetDocumentMetadata
SetEmbeddedFileStrProperty
SetHeaderCommentsFromString
SetHeaderCommentsFromVariant
SetInformation
SetJavaScriptMode
SetOpenActionDestination
SetOpenActionDestinationFull
SetOpenActionJavaScript
SetOpenActionMenu
SetPDFAMode
SetPageLayout
SetPageMode
SetViewerPreferences
StoreCustomDataFromFile
StoreCustomDataFromString
StoreCustomDataFromVariant

Extraction

CopyPageRanges
CopyPageRangesEx
DAExtractPageText
DAExtractPageTextBlocks
DAGetTextBlockAsString
DAGetTextBlockBound
DAGetTextBlockCharWidth
DAGetTextBlockColor
DAGetTextBlockColorType
DAGetTextBlockCount
DAGetTextBlockFontName
DAGetTextBlockFontSize
DAGetTextBlockText
DASetTextExtractionArea
DASetTextExtractionOptions
DASetTextExtractionScaling
DASetTextExtractionWordGap
ExtractFilePageContentToString
ExtractFilePageContentToVariant
ExtractFilePageText
ExtractFilePageTextBlocks
ExtractFilePages
ExtractFilePagesEx
ExtractPageRanges
ExtractPageTextBlocks
ExtractPages
GetPageText

Extraction continued...

GetTextBlockAsString
GetTextBlockBound
GetTextBlockCharWidth
GetTextBlockColor
GetTextBlockColorType
GetTextBlockCount
GetTextBlockFontName
GetTextBlockFontSize
GetTextBlockText
ReleaseTextBlocks
SetTextExtractionArea
SetTextExtractionOptions
SetTextExtractionScaling
SetTextExtractionWordGap

Fonts

AddCJKFont
AddFormFont
AddOpenTypeFontFromFile
AddStandardFont
AddSubsettedFont
AddTrueTypeFont
AddTrueTypeFontFromFile
AddTrueTypeSubsettedFont
AddType1Font
CharWidth
CompressFonts
DAGetTextBlockCharWidth
DAGetTextBlockFontName
DAGetTextBlockFontSize
FindFonts
FontCount
FontFamily
FontHasKerning
FontName
FontReference
FontSize
FontType
GetFontEncoding
GetFontFlags
GetFontID
GetFontIsEmbedded
GetFontIsSubsetted
GetFontMetrics
GetFontObjectNumber
GetFormFontCount
GetFormFontName
GetInstalledFontsByCharset
GetInstalledFontsByCodePage
GetKerning
GetTextAscent
GetTextBlockBound
GetTextBlockCharWidth
GetTextBlockFontName
GetTextBlockFontSize

Fonts continued...

GetTextBound
GetTextDescent
GetTextHeight
GetTextSize
GetTextWidth
GetUnicodeCharactersFromEncoding
HasFontResources
NoEmbedFontListAdd
NoEmbedFontListCount
NoEmbedFontListGet
NoEmbedFontListRemoveAll
NoEmbedFontListRemoveIndex
NoEmbedFontListRemoveName
ReplaceFonts
SaveFontToFile
SelectFont
SelectedFont
SetFontEncoding
SetFontFlags
SetFormFieldStandardFont
SetKerning
UpdateTrueTypeSubsettedFont
UseKerning

Form fields

AddArcToPath
AddFormFieldChoiceSub
AddFormFieldSub
AddFormFont
AttachAnnotToForm
DAGetFormFieldCount
DAGetFormFieldTitle
DAGetFormFieldValue
DeleteFormField
FindFormFieldByTitle
FlattenFormField
FormFieldCount
FormFieldHasParent
FormFieldJavaScriptAction
FormFieldWebLinkAction
GetFormFieldActionID
GetFormFieldAlignment
GetFormFieldAnnotFlags
GetFormFieldBackgroundColor
GetFormFieldBackgroundColorType
GetFormFieldBorderColor
GetFormFieldBorderColorType
GetFormFieldBorderProperty
GetFormFieldBorderStyle
GetFormFieldBound
GetFormFieldCaption
GetFormFieldCaptionEx
GetFormFieldCheckStyle
GetFormFieldChildTitle
GetFormFieldChoiceType

Form fields continued...

GetFormFieldColor
GetFormFieldComb
GetFormFieldDefaultValue
GetFormFieldDescription
GetFormFieldFlags
GetFormFieldFontName
GetFormFieldJavaScript
GetFormFieldKidCount
GetFormFieldKidTempIndex
GetFormFieldMaxLen
GetFormFieldNoExport
GetFormFieldPage
GetFormFieldPrintable
GetFormFieldReadOnly
GetFormFieldRequired
GetFormFieldRichTextString
GetFormFieldRotation
GetFormFieldSubCount
GetFormFieldSubDisplayName
GetFormFieldSubName
GetFormFieldSubmitActionString
GetFormFieldTabOrder
GetFormFieldTabOrderEx
GetFormFieldTextFlags
GetFormFieldTextSize
GetFormFieldTitle
GetFormFieldType
GetFormFieldValue
GetFormFieldValueByTitle
GetFormFieldVisible
GetFormFieldWebLink
GetFormFontCount
GetFormFontName
GetTabOrderMode
GetXFAFormFieldCount
GetXFAFormFieldName
GetXFAFormFieldNames
GetXFAFormFieldValue
GetXFAToString
IsAnnotFormField
NewChildFormField
NewFormField
RemoveAppearanceStream
RemoveFormFieldBackgroundColor
RemoveFormFieldBorderColor
RemoveFormFieldChoiceSub
RemoveXFAEntries
SetCharWidth
SetFormFieldAlignment
SetFormFieldAnnotFlags
SetFormFieldBackgroundColor
SetFormFieldBackgroundColorCMYK
SetFormFieldBackgroundColorGray
SetFormFieldBackgroundColorSep
SetFormFieldBorderColor
SetFormFieldBorderColorCMYK

Form fields continued...

SetFormFieldBorderColorGray
SetFormFieldBorderColorSep
SetFormFieldBorderStyle
SetFormFieldBounds
SetFormFieldCalcOrder
SetFormFieldCaption
SetFormFieldCheckStyle
SetFormFieldChildTitle
SetFormFieldChoiceSub
SetFormFieldChoiceType
SetFormFieldColor
SetFormFieldColorCMYK
SetFormFieldColorSep
SetFormFieldComb
SetFormFieldDefaultValue
SetFormFieldDescription
SetFormFieldFlags
SetFormFieldFont
SetFormFieldHighlightMode
SetFormFieldIcon
SetFormFieldIconStyle
SetFormFieldMaxLen
SetFormFieldNoExport
SetFormFieldOptional
SetFormFieldPage
SetFormFieldPrintable
SetFormFieldReadOnly
SetFormFieldRequired
SetFormFieldResetAction
SetFormFieldRichTextString
SetFormFieldRotation
SetFormFieldSignatureImage
SetFormFieldStandardFont
SetFormFieldSubmitAction
SetFormFieldSubmitActionEx
SetFormFieldTabOrder
SetFormFieldTextFlags
SetFormFieldTextSize
SetFormFieldTitle
SetFormFieldValue
SetFormFieldValueByTitle
SetFormFieldVisible
SetNeedAppearances
SetTabOrderMode
SetXFAFormFieldAccess
SetXFAFormFieldBorderColor
SetXFAFormFieldBorderPresence
SetXFAFormFieldBorderWidth
SetXFAFormFieldValue
SetXFAFromString
UpdateAndFlattenFormField
UpdateAppearanceStream

HTML text

DrawHTMLText
DrawHTMLTextBox
DrawHTMLTextBoxMatrix
DrawHTMLTextMatrix

HTML text continued...

GetHTMLTextHeight
GetHTMLTextLineCount
GetHTMLTextWidth
SetHTMLBoldFont
SetHTMLBoldItalicFont
SetHTMLItalicFont
SetHTMLNormalFont

Image handling

AddImageFromFile
AddImageFromFileOffset
AddImageFromStream
AddImageFromString
AddImageFromVariant
AddSVGAnnotationFromFile
AddSWFAnnotationFromFile
AddU3DAnnotationFromFile
ClearImage
CompressImages
DAGetImageDataToString
DAGetImageDataToVariant
DAGetImageDblProperty
DAGetImageIntProperty
DAGetImageListCount
DAGetPageImageList
DAReleaseImageList
DASaveImageDataToFile
DrawImage
DrawImageMatrix
DrawRotatedImage
DrawScaledImage
FindImages
FitImage
GetImageID
GetImageListCount
GetImageListItemDataToString
GetImageListItemDataToVariant
GetImageListItemDblProperty
GetImageListItemIntProperty
GetImagePageCount
GetImagePageCountFromString
GetPageImageList
ImageCount
ImageFillColor
ImageHeight
ImageHorizontalResolution
ImageResolutionUnits
ImageType
ImageVerticalResolution
ImageWidth
ImportEMFFromFile
ImportEMFFromStream
ReleaseImage
ReleaseImageList
RenderAsMultipageTIFFToFile

Image handling continued...

ReplaceImage
ReverseImage
SaveImageListItemDataToFile
SaveImageToFile
SaveImageToStream
SaveImageToString
SaveImageToVariant
SelectImage
SelectedImage
SetBlendMode
SetFindImagesMode
SetFormFieldSignatureImage
SetImageAsMask
SetImageMask
SetImageMaskCMYK
SetImageMaskFromImage
SetImageOptional
SetImageResolution
SetPNGTransparencyColor

JavaScript

AddGlobalJavaScript
AddLinkToJavaScript
DocJavaScriptAction
FormFieldJavaScriptAction
GetDocJavaScript
GetGlobalJavaScript
GetOpenActionJavaScript
GetOutlineJavaScript
GetPageJavaScript
GlobalJavaScriptCount
GlobalJavaScriptPackageName
PageJavaScriptAction
RemoveGlobalJavaScript
SetJavaScriptMode
SetOpenActionJavaScript
SetOutlineJavaScript

Measurement and coordinate units

AddLGIDictToPage
DeletePageLGIDict
GetCSDictEPSG
GetCSDictType
GetCSDictWKT
GetImageMeasureDict
GetImagePtDataDict
GetMeasureDictBoundsCount
GetMeasureDictBoundsItem
GetMeasureDictCoordinateSystem
GetMeasureDictDCSDict
GetMeasureDictGCSDict
GetMeasureDictGPTSCount
GetMeasureDictGPTSItem
GetMeasureDictLPTSCount

Measurement and coordinate units
 continued...

GetMeasureDictLPTSItem
GetMeasureDictPDU
GetOrigin
GetPageLGIDictContent
GetPageLGIDictCount
GetPageViewPortCount
GetPageViewPortID
GetViewPortBBox
GetViewPortMeasureDict
GetViewPortName
GetViewPortPtDataDict
MultiplyScale
SetCSDictEPSG
SetCSDictType
SetCSDictWKT
SetMeasureDictBoundsCount
SetMeasureDictBoundsItem
SetMeasureDictCoordinateSystem
SetMeasureDictGPTSCount
SetMeasureDictGPTSItem
SetMeasureDictLPTSCount
SetMeasureDictLPTSItem
SetMeasureDictPDU
SetMeasurementUnits
SetOrigin
SetPrecision
SetScale

Miscellaneous functions

AddToBuffer
AddToFileList
AnsiStringResultLength
CheckObjects
CheckPageAnnots
ClearFileList
CreateBuffer
CreateLibrary
CreateNewObject
DAGetObjectCount
DAGetObjectToString
DAGetObjectToVariant
EncodeStringFromVariant
FileListCount
FileListItem
GetImagePageCount
GetImagePageCountFromString
GetMaxObjectNumber
GetObjectCount
GetObjectDecodeError
GetObjectToString
GetObjectToVariant
GetStringListCount
GetStringListItem
GetTempPath

Miscellaneous functions continued...

GetUnicodeCharactersFromEncoding
LastErrorCode
LastRenderError
LibraryVersion
LicenseInfo
LinearizeFile
NoEmbedFontListAdd
NoEmbedFontListCount
NoEmbedFontListGet
NoEmbedFontListRemoveAll
NoEmbedFontListRemoveIndex
NoEmbedFontListRemoveName
ReleaseBuffer
ReleaseLibrary
ReleaseStringList
SetAnsiMode
SetCairoFileName
SetCompatibility
SetDPLRFileName
SetObjectFromString
SetObjectFromVariant
SetTempFile
SetTempPath
StringResultLength
TestTempPath
TransformFile
UnlockKey
Unlocked

Outlines

CloneOutlineAction
CloseOutline
CompareOutlines
GetFirstChildOutline
GetFirstOutline
GetNextOutline
GetOutlineActionID
GetOutlineColor
GetOutlineDest
GetOutlineID
GetOutlineJavaScript
GetOutlineObjectNumber
GetOutlineOpenFile
GetOutlinePage
GetOutlineStyle
GetOutlineWebLink
GetParentOutline
GetPrevOutline
MoveOutlineAfter
MoveOutlineBefore
NewOutline
NewStaticOutline
OpenOutline
OutlineCount
OutlineTitle

Outlines continued...

RemoveOutline
SetOutlineColor
SetOutlineDestination
SetOutlineDestinationFull
SetOutlineDestinationZoom
SetOutlineJavaScript
SetOutlineNamedDestination
SetOutlineOpenFile
SetOutlineRemoteDestination
SetOutlineStyle
SetOutlineTitle
SetOutlineWebLink

Page layout

AddSVGAnnotationFromFile
AddSWFAnnotationFromFile
AddU3DAnnotationFromFile
AppendSpace
AppendTableColumns
AppendTableRows
AppendText
ApplyStyle
BeginPageUpdate
CreateTable
DADrawCapturedPage
DADrawRotatedCapturedPage
DrawCapturedPage
DrawCapturedPageMatrix
DrawHTMLText
DrawHTMLTextBox
DrawHTMLTextBoxMatrix
DrawHTMLTextMatrix
DrawImage
DrawImageMatrix
DrawMultiLineText
DrawPostScriptXObject
DrawRotatedCapturedPage
DrawRotatedImage
DrawRotatedMultiLineText
DrawRotatedText
DrawRotatedTextBox
DrawRotatedTextBoxEx
DrawRoundedBox
DrawRoundedRotatedBox
DrawScaledImage
DrawSpacedText
DrawTableRows
DrawText
DrawTextArc
DrawTextBox
DrawTextBoxMatrix
DrawWrappedText
EndPageUpdate
FitImage
FitRotatedTextBox

Page layout continued...

FitTextBox
FlattenAnnot
FlattenFormField
GetBarcodeWidth
GetTableCellDblProperty
GetTableCellIntProperty
GetTableCellStrProperty
GetTableColumnCount
GetTableLastDrawnRow
GetTableRowCount
GetTextAscent
GetTextBound
GetTextDescent
GetTextHeight
GetTextSize
GetTextWidth
GetWrappedText
GetWrappedTextHeight
GetWrappedTextLineCount
ImageFillColor
InsertTableColumns
InsertTableRows
LoadState
MergeTableCells
ReplaceImage
SaveState
SelectImage
SelectPage
SelectedImage
SelectedPage
SetCapturedPageOptional
SetCapturedPageTransparencyGroup
SetImageAsMask
SetImageMask
SetImageMaskCMYK
SetImageMaskFromImage
SetOverprint
SetPageContentFromString
SetPageContentFromVariant
SetPageDimensions
SetPageSize
SetPageTransparencyGroup
SetTableBorderColor
SetTableBorderColorCMYK
SetTableBorderWidth
SetTableCellAlignment
SetTableCellBackgroundColor
SetTableCellBackgroundColorCMYK
SetTableCellBorderColor
SetTableCellBorderColorCMYK
SetTableCellBorderWidth
SetTableCellContent
SetTableCellPadding
SetTableCellTextColor
SetTableCellTextColorCMYK
SetTableCellTextSize

Page layout continued...

SetTableColumnWidth
SetTableRowHeight
SetTableThinBorders
SetTableThinBordersCMYK
SetTransparency
UpdateAndFlattenFormField

Page manipulation

AddPageMatrix
BalanceContentStream
CapturePage
CapturePageEx
ClonePages
CopyPageRanges
CopyPageRangesEx
DACapturePage
DACapturePageEx
DAExtractPageText
DAHidePage
DAMovePage
DANewPage
DANewPages
DANormalizePage
DeletePages
DrawBox
DrawRotatedBox
DrawRotatedCapturedPage
ExtractFilePageContentToString
ExtractFilePageContentToVariant
ExtractFilePages
ExtractFilePagesEx
ExtractPageRanges
ExtractPages
GetContentStreamToString
GetContentStreamToVariant
GetPageContentToString
GetPageContentToVariant
GetPageText
HidePage
InsertPages
MovePage
NewPage
NewPageFromCanvasDC
NewPages
NormalizePage
ReplaceTag
RotatePage
SelectPage
SelectedPage
SetContentStreamFromString
SetContentStreamFromVariant
SetPageContentFromString
SetPageContentFromVariant
SetPageThumbnail
SplitPageText

Page properties

AddLGIDictToPage
AddLinkToDestination
AddLinkToPage
AddPageLabels
BalancePageTree
ClearPageLabels
CompressPage
DAGetPageBox
DAGetPageContentToString
DAGetPageContentToVariant
DAGetPageHeight
DAGetPageImageList
DAGetPageWidth
DAHasPageBox
DAPageRotation
DAReleaseImageList
DARotatePage
DASetPageBox
DASetPageSize
DeletePageLGIDict
ExtractFilePageText
ExtractFilePageTextBlocks
GetContentStreamToString
GetContentStreamToVariant
GetPageBox
GetPageColorSpaces
GetPageContentToString
GetPageContentToVariant
GetPageImageList
GetPageJavaScript
GetPageLGIDictContent
GetPageLGIDictCount
GetPageLabel
GetPageMetricsToString
GetPageUserUnit
GetPageViewPortCount
GetPageViewPortID
GetViewPortBBox
GetViewPortMeasureDict
GetViewPortName
GetViewPortPtDataDict
HasPageBox
HidePage
PageHasFontResources
PageHeight
PageJavaScriptAction
PageRotation
PageWidth
ReleaseImageList
RemovePageBox
RotatePage
SetContentStreamFromString
SetContentStreamFromVariant
SetCropBox
SetFindImagesMode

Page properties continued...

SetPageActionMenu
SetPageBox
SetPageContentFromString
SetPageContentFromVariant
SetPageDimensions
SetPageSize
SetPageUserUnit

Path definition and drawing

AddArcToPath
AddBoxToPath
AddCurveToPath
AddLineToPath
ClosePath
DrawPath
DrawPathEvenOdd
MovePath
SetClippingPath
SetClippingPathEvenOdd
SetFillShader
SetLineShader
SetTextShader
StartPath

Rendering and printing

DARenderPageToDC
DARenderPageToFile
DARenderPageToStream
DARenderPageToString
DARenderPageToVariant
GetDefaultPrinterName
GetLatestPrinterNames
GetPrintPreviewBitmapToString
GetPrintPreviewBitmapToVariant
GetPrinterBins
GetPrinterDevModeToString
GetPrinterDevModeToVariant
GetPrinterMediaTypes
GetPrinterNames
GetRenderScale
LastRenderError
NewCustomPrinter
NewInternalPrinterObject
PrintDocument
PrintDocumentToFile
PrintDocumentToPrinterObject
PrintMode
PrintOptions
PrintPages
PrintPagesToFile
PrintPagesToPrinterObject
RenderAsMultipageTIFFToFile
RenderDocumentToFile
RenderPageToDC

Rendering and printing continued...

RenderPageToDCClip
RenderPageToFile
RenderPageToStream
RenderPageToString
RenderPageToVariant
RequestPrinterStatus
SelectRenderer
SetGDIPlusFileName
SetGDIPlusOptions
SetJPEGQuality
SetPrinterDevModeFromString
SetPrinterDevModeFromVariant
SetRenderCropType
SetRenderDCErasePage
SetRenderDCOffset
SetRenderOptions
SetRenderScale
SetupCustomPrinter

Security and Signatures

CheckPassword
Decrypt
DecryptFile
EncodePermissions
Encrypt
EncryptFile
EncryptWithFingerprint
EncryptionAlgorithm
EncryptionStatus
EncryptionStrength
EndSignProcessToFile
EndSignProcessToStream
EndSignProcessToString
GetEncryptionFingerprint
GetSignProcessByteRange
GetSignProcessResult
NewSignProcessFromFile
NewSignProcessFromStream
NewSignProcessFromString
ReleaseSignProcess
SecurityInfo
SetFormFieldSignatureImage
SetSignProcessCustomSubFilter
SetSignProcessField
SetSignProcessFieldBounds
SetSignProcessFieldImageFromFile
SetSignProcessFieldPage
SetSignProcessInfo
SetSignProcessKeyset
SetSignProcessPFXFromFile
SetSignProcessPassthrough
SetSignProcessSubFilter
SignFile

Text

AddCJKFont
AddFreeTextAnnotation
AddOpenTypeFontFromFile
AddStandardFont

Text continued...

AddSubsettedFont
AddTrueTypeFont
AddTrueTypeFontFromFile
AddTrueTypeSubsettedFont
AddType1Font
AppendSpace
AppendText
ApplyStyle
CharWidth
ClearTextFormatting
DAExtractPageTextBlocks
DAGetTextBlockAsString
DAGetTextBlockBound
DAGetTextBlockCharWidth
DAGetTextBlockColor
DAGetTextBlockColorType
DAGetTextBlockCount
DAGetTextBlockFontName
DAGetTextBlockFontSize
DAGetTextBlockText
DANormalizePage
DASetTextExtractionArea
DASetTextExtractionOptions
DASetTextExtractionScaling
DASetTextExtractionWordGap
DrawHTMLText
DrawHTMLTextBox
DrawHTMLTextBoxMatrix
DrawMultiLineText
DrawRotatedMultiLineText
DrawRotatedText
DrawRotatedTextBox
DrawRotatedTextBoxEx
DrawSpacedText
DrawText
DrawTextArc
DrawTextBox
DrawTextBoxMatrix
DrawWrappedText
EncodeStringFromVariant
ExtractFilePageTextBlocks
ExtractPageTextBlocks
FitRotatedTextBox
FitTextBox
FontHasKerning
FontSize
GetFontID
GetHTMLTextHeight
GetHTMLTextLineCount
GetHTMLTextWidth
GetKerning
GetTextAscent
GetTextBlockAsString
GetTextBlockBound
GetTextBlockCharWidth
GetTextBlockColor

Text continued...

GetTextBlockColorType
GetTextBlockCount
GetTextBlockFontName
GetTextBlockFontSize
GetTextBlockText
GetTextBound
GetTextDescent
GetTextHeight
GetTextSize
GetTextWidth
GetUnicodeCharactersFromEncoding
GetWrappedText
GetWrappedTextBreakString
GetWrappedTextHeight
GetWrappedTextLineCount
NormalizePage
ReleaseTextBlocks
RemoveStyle
SaveStyle
SelectFont
SelectedFont
SetBlendMode
SetBreakString
SetCharWidth
SetFormFieldTextSize
SetHTMLBoldFont
SetHTMLBoldItalicFont
SetHTMLItalicFont
SetHTMLNormalFont
SetKerning
SetPageTransparencyGroup
SetTextAlign
SetTextCharSpacing
SetTextColor
SetTextColorCMYK
SetTextColorSep
SetTextExtractionArea
SetTextExtractionOptions
SetTextExtractionScaling
SetTextExtractionWordGap
SetTextHighlight
SetTextHighlightColor
SetTextHighlightColorCMYK
SetTextHighlightColorSep
SetTextMode
SetTextRise
SetTextScaling
SetTextSize
SetTextSpacing
SetTextUnderline
SetTextUnderlineColor
SetTextUnderlineColorCMYK
SetTextUnderlineColorSep
SetTextUnderlineCustomDash
SetTextUnderlineDash
SetTextUnderlineDistance

Text continued...

SetTextUnderlineWidth
SetTextWordSpacing
SetTransparency
UpdateTrueTypeSubsettedFont
UseKerning

Vector graphics

AddArcToPath
AddBoxToPath
AddCurveToPath
AddLineToPath
AddSVGAnnotationFromFile
AddSWFAnnotationFromFile
AddSeparationColor
AddU3DAnnotationFromFile
ClosePath
DrawArc
DrawBarcode
DrawBox
DrawCircle
DrawDataMatrixSymbol
DrawEllipse
DrawEllipticArc
DrawIntelligentMailBarcode
DrawLine
DrawPDF417Symbol
DrawPDF417SymbolEx
DrawPath
DrawPathEvenOdd
DrawQRCode
DrawRotatedBox
DrawRoundedBox
DrawRoundedRotatedBox
GetBarcodeWidth
GetCanvasDC
GetCanvasDCEx
ImportEMFFromFile
ImportEMFFromStream
LoadFromCanvasDC
LoadState
MovePath
NewPageFromCanvasDC
NewRGBAxialShader
NewTilingPatternFromCapturedPage
NoEmbedFontListAdd
NoEmbedFontListCount
NoEmbedFontListGet
NoEmbedFontListRemoveAll
NoEmbedFontListRemoveIndex
NoEmbedFontListRemoveName
SaveState
SetBlendMode
SetClippingPath
SetClippingPathEvenOdd
SetCustomLineDash

Vector graphics continued...

SetFillColor
SetFillColorCMYK
SetFillColorSep
SetFillShader
SetFillTilingPattern
SetLineCap
SetLineColor
SetLineColorCMYK
SetLineColorSep
SetLineDash
SetLineDashEx
SetLineJoin
SetLineShader
SetLineWidth
SetOverprint
SetPageTransparencyGroup
SetTextShader
SetTransparency
StartPath

Appendix C: Functions available in the Lite Edition
AddImageFromFile
AddLinkToWeb
AddStandardFont
DocumentCount
DrawQRCode
DrawImage
DrawText
DrawTextBox
FindImages
GetInformation
GetPageBox
HasFontResources
ImageCount
ImageHeight
ImageWidth
IsLinearized
LastErrorCode
LoadFromFile
MergeDocument
NewDocument
NewPage
NormalizePage
PageCount
PageHeight
PageRotation
PageWidth
RemoveDocument
RotatePage
SaveToFile
SecurityInfo
SelectDocument
SelectedDocument
SelectFont
SelectImage
SelectPage
SetBaseURL
SetInformation
SetMeasurementUnits
SetOrigin
SetPageBox
SetPageDimensions
SetPageLayout
SetPageMode
SetPageSize
SetTextAlign
SetTextColor
SetTextSize
SetTextUnderline

	Annotations and hotspot links
	AddArcToPath
	AddFreeTextAnnotation
	AddLinkToDestination
	AddLinkToEmbeddedFile
	AddLinkToFile
	AddLinkToFileDest
	AddLinkToFileEx
	AddLinkToJavaScript
	AddLinkToLocalFile
	AddLinkToPage
	AddLinkToWeb
	AddNoteAnnotation
	AddRelativeLinkToFile
	AddRelativeLinkToFileDest
	AddRelativeLinkToFileEx
	AddRelativeLinkToLocalFile
	AddSVGAnnotationFromFile
	AddSWFAnnotationFromFile
	AddStampAnnotation
	AddStampAnnotationFromImage
	AddStampAnnotationFromImageID
	AddTextMarkupAnnotation
	AddU3DAnnotationFromFile
	AnnotationCount
	AttachAnnotToForm
	CheckPageAnnots
	CloneOutlineAction
	DeleteAnnotation
	DrawPostScriptXObject
	FlattenAnnot
	GetActionDest
	GetActionType
	GetActionURL
	GetAnnotActionID
	GetAnnotDblProperty
	GetAnnotDest
	GetAnnotEmbeddedFileName
	GetAnnotEmbeddedFileToFile
	GetAnnotEmbeddedFileToString
	GetAnnotIntProperty
	GetAnnotQuadCount
	GetAnnotQuadPoints
	GetAnnotSoundToFile
	GetAnnotSoundToString
	GetAnnotStrProperty
	GetBaseURL
	GetDestName
	GetDestPage
	GetDestType
	GetDestValue
	GetFormFieldActionID
	GetNamedDestination
	GetOutlineActionID
	GetTabOrderMode
	IsAnnotFormField
	NewDestination
	NewNamedDestination
	SetActionURL
	SetAnnotBorderColor
	SetAnnotBorderStyle
	SetAnnotContents
	SetAnnotDblProperty
	SetAnnotIntProperty
	SetAnnotQuadPoints
	SetAnnotRect
	SetAnnotStrProperty
	SetBaseURL
	SetDestProperties
	SetDestValue
	SetMarkupAnnotStyle
	SetOutlineNamedDestination
	SetTabOrderMode

	Barcodes
	DrawBarcode
	DrawDataMatrixSymbol
	DrawIntelligentMailBarcode
	DrawPDF417Symbol
	DrawPDF417SymbolEx
	DrawQRCode

	Color
	AddSeparationColor
	DAGetTextBlockColor
	DAGetTextBlockColorType
	GetFormFieldBackgroundColor
	GetFormFieldBackgroundColorType
	GetFormFieldBorderColor
	GetFormFieldBorderColorType
	GetFormFieldColor
	GetOutlineColor
	GetPageColorSpaces
	GetPageJavaScript
	GetTextBlockColor
	GetTextBlockColorType
	ImageFillColor
	NewRGBAxialShader
	NewTilingPatternFromCapturedPage
	SetAnnotBorderColor
	SetFillColor
	SetFillColorCMYK
	SetFillColorSep
	SetFillShader
	SetFillTilingPattern
	SetFormFieldBackgroundColor
	SetFormFieldBackgroundColorCMYK
	SetFormFieldBackgroundColorGray
	SetFormFieldBackgroundColorSep
	SetFormFieldBorderColor
	SetFormFieldBorderColorCMYK
	SetFormFieldBorderColorGray
	SetFormFieldBorderColorSep
	SetFormFieldColor
	SetFormFieldColorCMYK
	SetFormFieldColorSep
	SetImageMaskCMYK
	SetLineColor
	SetLineColorCMYK
	SetLineColorSep
	SetLineShader
	SetMarkupAnnotStyle
	SetOutlineColor
	SetPNGTransparencyColor
	SetTableBorderColor
	SetTableBorderColorCMYK
	SetTableCellBackgroundColor
	SetTableCellBackgroundColorCMYK
	SetTableCellBorderColor
	SetTableCellBorderColorCMYK
	SetTableCellTextColor
	SetTableCellTextColorCMYK
	SetTextColor
	SetTextColorCMYK
	SetTextColorSep
	SetTextHighlightColor
	SetTextHighlightColorCMYK
	SetTextHighlightColorSep
	SetTextShader
	SetTextUnderlineColor
	SetTextUnderlineColorCMYK
	SetTextUnderlineColorSep
	SetXFAFormFieldBorderColor

	Content Streams and Optional Content Groups
	BalanceContentStream
	CombineContentStreams
	ContentStreamCount
	ContentStreamSafe
	DeleteContentStream
	DeleteOptionalContentGroup
	EditableContentStream
	EncapsulateContentStream
	GetContentStreamToString
	GetContentStreamToVariant
	GetOptionalContentConfigCount
	GetOptionalContentConfigLocked
	GetOptionalContentConfigOrderCount
	GetOptionalContentConfigOrderItemID
	GetOptionalContentConfigOrderItemLabel
	GetOptionalContentConfigOrderItemLevel
	GetOptionalContentConfigOrderItemType
	GetOptionalContentConfigState
	GetOptionalContentGroupID
	GetOptionalContentGroupName
	GetOptionalContentGroupPrintable
	GetOptionalContentGroupVisible
	MoveContentStream
	NewContentStream
	NewOptionalContentGroup
	OptionalContentGroupCount
	RemoveSharedContentStreams
	SelectContentStream
	SetCapturedPageOptional
	SetCapturedPageTransparencyGroup
	SetContentStreamFromString
	SetContentStreamFromVariant
	SetContentStreamOptional
	SetFormFieldOptional
	SetImageOptional
	SetOptionalContentConfigLocked
	SetOptionalContentConfigState
	SetOptionalContentGroupName
	SetOptionalContentGroupPrintable
	SetOptionalContentGroupVisible
	UseUnsafeContentStreams

	Direct access functionality
	DAAppendFile
	DACapturePage
	DACapturePageEx
	DACloseFile
	DADrawCapturedPage
	DADrawRotatedCapturedPage
	DAEmbedFileStreams
	DAExtractPageText
	DAExtractPageTextBlocks
	DAFindPage
	DAGetAnnotationCount
	DAGetFormFieldCount
	DAGetFormFieldTitle
	DAGetFormFieldValue
	DAGetImageDataToString
	DAGetImageDataToVariant
	DAGetImageDblProperty
	DAGetImageIntProperty
	DAGetImageListCount
	DAGetInformation
	DAGetObjectCount
	DAGetObjectToString
	DAGetObjectToVariant
	DAGetPageBox
	DAGetPageContentToString
	DAGetPageContentToVariant
	DAGetPageCount
	DAGetPageHeight
	DAGetPageImageList
	DAGetPageWidth
	DAGetTextBlockAsString
	DAGetTextBlockBound
	DAGetTextBlockCharWidth
	DAGetTextBlockColor
	DAGetTextBlockColorType
	DAGetTextBlockCount
	DAGetTextBlockFontName
	DAGetTextBlockFontSize
	DAGetTextBlockText
	DAHasPageBox
	DAHidePage
	DAMovePage
	DANewPage
	DANewPages
	DANormalizePage
	DAOpenFile
	DAOpenFileReadOnly
	DAOpenFromStream
	DAPageRotation
	DAReleaseImageList
	DAReleaseTextBlocks
	DARemoveUsageRights
	DARenderPageToDC
	DARenderPageToFile
	DARenderPageToStream
	DARenderPageToString
	DARenderPageToVariant
	DARotatePage
	DASaveAsFile
	DASaveCopyToStream
	DASaveImageDataToFile
	DASaveToStream
	DASetInformation
	DASetPageBox
	DASetPageLayout
	DASetPageMode
	DASetPageSize
	DASetTextExtractionArea
	DASetTextExtractionOptions
	DASetTextExtractionScaling
	DASetTextExtractionWordGap
	DAShiftedHeader

	Document management
	AppendToFile
	AppendToString
	AppendToVariant
	BalancePageTree
	DAAppendFile
	DAOpenFile
	DAOpenFileReadOnly
	DAOpenFromStream
	DASaveAsFile
	DASaveCopyToStream
	DASaveToStream
	DAShiftedHeader
	DecryptFile
	DocumentCount
	GetCanvasDC
	GetCanvasDCEx
	GetDocumentFileName
	GetDocumentID
	GetDocumentRepaired
	InsertPages
	LoadFromCanvasDC
	LoadFromFile
	LoadFromStream
	LoadFromString
	LoadFromVariant
	MovePage
	NewDestination
	NewDocument
	RemoveDocument
	SaveToFile
	SaveToStream
	SaveToString
	SaveToVariant
	SelectDocument
	SelectedDocument
	SetAppendInputFromString
	SetAppendInputFromVariant
	SetFindImagesMode

	Document manipulation
	CheckFileCompliance
	DAEmbedFileStreams
	DANormalizePage
	DARemoveUsageRights
	ExtractFilePages
	ExtractFilePagesEx
	ExtractPageRanges
	LinearizeFile
	MergeDocument
	MergeFileList
	MergeFileListFast
	MergeFiles
	MergeStreams
	RemoveUsageRights
	ReplaceFonts
	TransformFile

	Document properties
	AddEmbeddedFile
	AddFileAttachment
	AddGlobalJavaScript
	AddLinkToEmbeddedFile
	AnalyseFile
	CompressContent
	CompressFonts
	CompressImages
	DAGetInformation
	DAGetPageCount
	DASetInformation
	DASetPageLayout
	DASetPageMode
	Decrypt
	DeleteAnalysis
	DocJavaScriptAction
	EmbedFile
	EmbeddedFileCount
	EncryptionAlgorithm
	EncryptionStatus
	EncryptionStrength
	FindFonts
	FindImages
	GetAnalysisInfo
	GetBaseURL
	GetCatalogInformation
	GetCustomInformation
	GetCustomKeys
	GetDocJavaScript
	GetDocumentFileSize
	GetDocumentIdentifier
	GetDocumentMetadata
	GetDocumentRepaired
	GetDocumentResourceList
	GetEmbeddedFileContentToFile
	GetEmbeddedFileContentToStream
	GetEmbeddedFileContentToString
	GetEmbeddedFileContentToVariant
	GetEmbeddedFileID
	GetEmbeddedFileIntProperty
	GetEmbeddedFileStrProperty
	GetEncryptionFingerprint
	GetFileMetadata
	GetGlobalJavaScript
	GetInformation
	GetMaxObjectNumber
	GetNamedDestination
	GetOpenActionDestination
	GetOpenActionJavaScript
	GetPageLayout
	GetPageMode
	GetViewerPreferences
	GlobalJavaScriptCount
	GlobalJavaScriptPackageName
	HasFontResources
	ImageCount
	IsLinearized
	NewPostScriptXObject
	PageCount
	RemoveCustomInformation
	RemoveEmbeddedFile
	RemoveGlobalJavaScript
	RemoveOpenAction
	RemoveUsageRights
	RemoveXFAEntries
	RetrieveCustomDataToFile
	RetrieveCustomDataToString
	RetrieveCustomDataToVariant
	SecurityInfo
	SetBaseURL
	SetCatalogInformation
	SetCustomInformation
	SetDecodeMode
	SetDocumentMetadata
	SetEmbeddedFileStrProperty
	SetHeaderCommentsFromString
	SetHeaderCommentsFromVariant
	SetInformation
	SetJavaScriptMode
	SetOpenActionDestination
	SetOpenActionDestinationFull
	SetOpenActionJavaScript
	SetOpenActionMenu
	SetPDFAMode
	SetPageLayout
	SetPageMode
	SetViewerPreferences
	StoreCustomDataFromFile
	StoreCustomDataFromString
	StoreCustomDataFromVariant

	Extraction
	CopyPageRanges
	CopyPageRangesEx
	DAExtractPageText
	DAExtractPageTextBlocks
	DAGetTextBlockAsString
	DAGetTextBlockBound
	DAGetTextBlockCharWidth
	DAGetTextBlockColor
	DAGetTextBlockColorType
	DAGetTextBlockCount
	DAGetTextBlockFontName
	DAGetTextBlockFontSize
	DAGetTextBlockText
	DASetTextExtractionArea
	DASetTextExtractionOptions
	DASetTextExtractionScaling
	DASetTextExtractionWordGap
	ExtractFilePageContentToString
	ExtractFilePageContentToVariant
	ExtractFilePageText
	ExtractFilePageTextBlocks
	ExtractFilePages
	ExtractFilePagesEx
	ExtractPageRanges
	ExtractPageTextBlocks
	ExtractPages
	GetPageText
	GetTextBlockAsString
	GetTextBlockBound
	GetTextBlockCharWidth
	GetTextBlockColor
	GetTextBlockColorType
	GetTextBlockCount
	GetTextBlockFontName
	GetTextBlockFontSize
	GetTextBlockText
	ReleaseTextBlocks
	SetTextExtractionArea
	SetTextExtractionOptions
	SetTextExtractionScaling
	SetTextExtractionWordGap

	Fonts
	AddCJKFont
	AddFormFont
	AddOpenTypeFontFromFile
	AddStandardFont
	AddSubsettedFont
	AddTrueTypeFont
	AddTrueTypeFontFromFile
	AddTrueTypeSubsettedFont
	AddType1Font
	CharWidth
	CompressFonts
	DAGetTextBlockCharWidth
	DAGetTextBlockFontName
	DAGetTextBlockFontSize
	FindFonts
	FontCount
	FontFamily
	FontHasKerning
	FontName
	FontReference
	FontSize
	FontType
	GetFontEncoding
	GetFontFlags
	GetFontID
	GetFontIsEmbedded
	GetFontIsSubsetted
	GetFontMetrics
	GetFontObjectNumber
	GetFormFontCount
	GetFormFontName
	GetInstalledFontsByCharset
	GetInstalledFontsByCodePage
	GetKerning
	GetTextAscent
	GetTextBlockBound
	GetTextBlockCharWidth
	GetTextBlockFontName
	GetTextBlockFontSize
	GetTextBound
	GetTextDescent
	GetTextHeight
	GetTextSize
	GetTextWidth
	GetUnicodeCharactersFromEncoding
	HasFontResources
	NoEmbedFontListAdd
	NoEmbedFontListCount
	NoEmbedFontListGet
	NoEmbedFontListRemoveAll
	NoEmbedFontListRemoveIndex
	NoEmbedFontListRemoveName
	ReplaceFonts
	SaveFontToFile
	SelectFont
	SelectedFont
	SetFontEncoding
	SetFontFlags
	SetFormFieldStandardFont
	SetKerning
	UpdateTrueTypeSubsettedFont
	UseKerning

	Form fields
	AddArcToPath
	AddFormFieldChoiceSub
	AddFormFieldSub
	AddFormFont
	AttachAnnotToForm
	DAGetFormFieldCount
	DAGetFormFieldTitle
	DAGetFormFieldValue
	DeleteFormField
	FindFormFieldByTitle
	FlattenFormField
	FormFieldCount
	FormFieldHasParent
	FormFieldJavaScriptAction
	FormFieldWebLinkAction
	GetFormFieldActionID
	GetFormFieldAlignment
	GetFormFieldAnnotFlags
	GetFormFieldBackgroundColor
	GetFormFieldBackgroundColorType
	GetFormFieldBorderColor
	GetFormFieldBorderColorType
	GetFormFieldBorderProperty
	GetFormFieldBorderStyle
	GetFormFieldBound
	GetFormFieldCaption
	GetFormFieldCaptionEx
	GetFormFieldCheckStyle
	GetFormFieldChildTitle
	GetFormFieldChoiceType
	GetFormFieldColor
	GetFormFieldComb
	GetFormFieldDefaultValue
	GetFormFieldDescription
	GetFormFieldFlags
	GetFormFieldFontName
	GetFormFieldJavaScript
	GetFormFieldKidCount
	GetFormFieldKidTempIndex
	GetFormFieldMaxLen
	GetFormFieldNoExport
	GetFormFieldPage
	GetFormFieldPrintable
	GetFormFieldReadOnly
	GetFormFieldRequired
	GetFormFieldRichTextString
	GetFormFieldRotation
	GetFormFieldSubCount
	GetFormFieldSubDisplayName
	GetFormFieldSubName
	GetFormFieldSubmitActionString
	GetFormFieldTabOrder
	GetFormFieldTabOrderEx
	GetFormFieldTextFlags
	GetFormFieldTextSize
	GetFormFieldTitle
	GetFormFieldType
	GetFormFieldValue
	GetFormFieldValueByTitle
	GetFormFieldVisible
	GetFormFieldWebLink
	GetFormFontCount
	GetFormFontName
	GetTabOrderMode
	GetXFAFormFieldCount
	GetXFAFormFieldName
	GetXFAFormFieldNames
	GetXFAFormFieldValue
	GetXFAToString
	IsAnnotFormField
	NewChildFormField
	NewFormField
	RemoveAppearanceStream
	RemoveFormFieldBackgroundColor
	RemoveFormFieldBorderColor
	RemoveFormFieldChoiceSub
	RemoveXFAEntries
	SetCharWidth
	SetFormFieldAlignment
	SetFormFieldAnnotFlags
	SetFormFieldBackgroundColor
	SetFormFieldBackgroundColorCMYK
	SetFormFieldBackgroundColorGray
	SetFormFieldBackgroundColorSep
	SetFormFieldBorderColor
	SetFormFieldBorderColorCMYK
	SetFormFieldBorderColorGray
	SetFormFieldBorderColorSep
	SetFormFieldBorderStyle
	SetFormFieldBounds
	SetFormFieldCalcOrder
	SetFormFieldCaption
	SetFormFieldCheckStyle
	SetFormFieldChildTitle
	SetFormFieldChoiceSub
	SetFormFieldChoiceType
	SetFormFieldColor
	SetFormFieldColorCMYK
	SetFormFieldColorSep
	SetFormFieldComb
	SetFormFieldDefaultValue
	SetFormFieldDescription
	SetFormFieldFlags
	SetFormFieldFont
	SetFormFieldHighlightMode
	SetFormFieldIcon
	SetFormFieldIconStyle
	SetFormFieldMaxLen
	SetFormFieldNoExport
	SetFormFieldOptional
	SetFormFieldPage
	SetFormFieldPrintable
	SetFormFieldReadOnly
	SetFormFieldRequired
	SetFormFieldResetAction
	SetFormFieldRichTextString
	SetFormFieldRotation
	SetFormFieldSignatureImage
	SetFormFieldStandardFont
	SetFormFieldSubmitAction
	SetFormFieldSubmitActionEx
	SetFormFieldTabOrder
	SetFormFieldTextFlags
	SetFormFieldTextSize
	SetFormFieldTitle
	SetFormFieldValue
	SetFormFieldValueByTitle
	SetFormFieldVisible
	SetNeedAppearances
	SetTabOrderMode
	SetXFAFormFieldAccess
	SetXFAFormFieldBorderColor
	SetXFAFormFieldBorderPresence
	SetXFAFormFieldBorderWidth
	SetXFAFormFieldValue
	SetXFAFromString
	UpdateAndFlattenFormField
	UpdateAppearanceStream

	HTML text
	DrawHTMLText
	DrawHTMLTextBox
	DrawHTMLTextBoxMatrix
	DrawHTMLTextMatrix
	GetHTMLTextHeight
	GetHTMLTextLineCount
	GetHTMLTextWidth
	SetHTMLBoldFont
	SetHTMLBoldItalicFont
	SetHTMLItalicFont
	SetHTMLNormalFont

	Image handling
	AddImageFromFile
	AddImageFromFileOffset
	AddImageFromStream
	AddImageFromString
	AddImageFromVariant
	AddSVGAnnotationFromFile
	AddSWFAnnotationFromFile
	AddU3DAnnotationFromFile
	ClearImage
	CompressImages
	DAGetImageDataToString
	DAGetImageDataToVariant
	DAGetImageDblProperty
	DAGetImageIntProperty
	DAGetImageListCount
	DAGetPageImageList
	DAReleaseImageList
	DASaveImageDataToFile
	DrawImage
	DrawImageMatrix
	DrawRotatedImage
	DrawScaledImage
	FindImages
	FitImage
	GetImageID
	GetImageListCount
	GetImageListItemDataToString
	GetImageListItemDataToVariant
	GetImageListItemDblProperty
	GetImageListItemIntProperty
	GetImagePageCount
	GetImagePageCountFromString
	GetPageImageList
	ImageCount
	ImageFillColor
	ImageHeight
	ImageHorizontalResolution
	ImageResolutionUnits
	ImageType
	ImageVerticalResolution
	ImageWidth
	ImportEMFFromFile
	ImportEMFFromStream
	ReleaseImage
	ReleaseImageList
	RenderAsMultipageTIFFToFile
	ReplaceImage
	ReverseImage
	SaveImageListItemDataToFile
	SaveImageToFile
	SaveImageToStream
	SaveImageToString
	SaveImageToVariant
	SelectImage
	SelectedImage
	SetBlendMode
	SetFindImagesMode
	SetFormFieldSignatureImage
	SetImageAsMask
	SetImageMask
	SetImageMaskCMYK
	SetImageMaskFromImage
	SetImageOptional
	SetImageResolution
	SetPNGTransparencyColor

	JavaScript
	AddGlobalJavaScript
	AddLinkToJavaScript
	DocJavaScriptAction
	FormFieldJavaScriptAction
	GetDocJavaScript
	GetGlobalJavaScript
	GetOpenActionJavaScript
	GetOutlineJavaScript
	GetPageJavaScript
	GlobalJavaScriptCount
	GlobalJavaScriptPackageName
	PageJavaScriptAction
	RemoveGlobalJavaScript
	SetJavaScriptMode
	SetOpenActionJavaScript
	SetOutlineJavaScript

	Measurement and coordinate units
	AddLGIDictToPage
	DeletePageLGIDict
	GetCSDictEPSG
	GetCSDictType
	GetCSDictWKT
	GetImageMeasureDict
	GetImagePtDataDict
	GetMeasureDictBoundsCount
	GetMeasureDictBoundsItem
	GetMeasureDictCoordinateSystem
	GetMeasureDictDCSDict
	GetMeasureDictGCSDict
	GetMeasureDictGPTSCount
	GetMeasureDictGPTSItem
	GetMeasureDictLPTSCount
	GetMeasureDictLPTSItem
	GetMeasureDictPDU
	GetOrigin
	GetPageLGIDictContent
	GetPageLGIDictCount
	GetPageViewPortCount
	GetPageViewPortID
	GetViewPortBBox
	GetViewPortMeasureDict
	GetViewPortName
	GetViewPortPtDataDict
	MultiplyScale
	SetCSDictEPSG
	SetCSDictType
	SetCSDictWKT
	SetMeasureDictBoundsCount
	SetMeasureDictBoundsItem
	SetMeasureDictCoordinateSystem
	SetMeasureDictGPTSCount
	SetMeasureDictGPTSItem
	SetMeasureDictLPTSCount
	SetMeasureDictLPTSItem
	SetMeasureDictPDU
	SetMeasurementUnits
	SetOrigin
	SetPrecision
	SetScale

	Miscellaneous functions
	AddToBuffer
	AddToFileList
	AnsiStringResultLength
	CheckObjects
	CheckPageAnnots
	ClearFileList
	CreateBuffer
	CreateLibrary
	CreateNewObject
	DAGetObjectCount
	DAGetObjectToString
	DAGetObjectToVariant
	EncodeStringFromVariant
	FileListCount
	FileListItem
	GetImagePageCount
	GetImagePageCountFromString
	GetMaxObjectNumber
	GetObjectCount
	GetObjectDecodeError
	GetObjectToString
	GetObjectToVariant
	GetStringListCount
	GetStringListItem
	GetTempPath
	GetUnicodeCharactersFromEncoding
	LastErrorCode
	LastRenderError
	LibraryVersion
	LicenseInfo
	LinearizeFile
	NoEmbedFontListAdd
	NoEmbedFontListCount
	NoEmbedFontListGet
	NoEmbedFontListRemoveAll
	NoEmbedFontListRemoveIndex
	NoEmbedFontListRemoveName
	ReleaseBuffer
	ReleaseLibrary
	ReleaseStringList
	SetAnsiMode
	SetCairoFileName
	SetCompatibility
	SetDPLRFileName
	SetObjectFromString
	SetObjectFromVariant
	SetTempFile
	SetTempPath
	StringResultLength
	TestTempPath
	TransformFile
	UnlockKey
	Unlocked

	Outlines
	CloneOutlineAction
	CloseOutline
	CompareOutlines
	GetFirstChildOutline
	GetFirstOutline
	GetNextOutline
	GetOutlineActionID
	GetOutlineColor
	GetOutlineDest
	GetOutlineID
	GetOutlineJavaScript
	GetOutlineObjectNumber
	GetOutlineOpenFile
	GetOutlinePage
	GetOutlineStyle
	GetOutlineWebLink
	GetParentOutline
	GetPrevOutline
	MoveOutlineAfter
	MoveOutlineBefore
	NewOutline
	NewStaticOutline
	OpenOutline
	OutlineCount
	OutlineTitle
	RemoveOutline
	SetOutlineColor
	SetOutlineDestination
	SetOutlineDestinationFull
	SetOutlineDestinationZoom
	SetOutlineJavaScript
	SetOutlineNamedDestination
	SetOutlineOpenFile
	SetOutlineRemoteDestination
	SetOutlineStyle
	SetOutlineTitle
	SetOutlineWebLink

	Page layout
	AddSVGAnnotationFromFile
	AddSWFAnnotationFromFile
	AddU3DAnnotationFromFile
	AppendSpace
	AppendTableColumns
	AppendTableRows
	AppendText
	ApplyStyle
	BeginPageUpdate
	CreateTable
	DADrawCapturedPage
	DADrawRotatedCapturedPage
	DrawCapturedPage
	DrawCapturedPageMatrix
	DrawHTMLText
	DrawHTMLTextBox
	DrawHTMLTextBoxMatrix
	DrawHTMLTextMatrix
	DrawImage
	DrawImageMatrix
	DrawMultiLineText
	DrawPostScriptXObject
	DrawRotatedCapturedPage
	DrawRotatedImage
	DrawRotatedMultiLineText
	DrawRotatedText
	DrawRotatedTextBox
	DrawRotatedTextBoxEx
	DrawRoundedBox
	DrawRoundedRotatedBox
	DrawScaledImage
	DrawSpacedText
	DrawTableRows
	DrawText
	DrawTextArc
	DrawTextBox
	DrawTextBoxMatrix
	DrawWrappedText
	EndPageUpdate
	FitImage
	FitRotatedTextBox
	FitTextBox
	FlattenAnnot
	FlattenFormField
	GetBarcodeWidth
	GetTableCellDblProperty
	GetTableCellIntProperty
	GetTableCellStrProperty
	GetTableColumnCount
	GetTableLastDrawnRow
	GetTableRowCount
	GetTextAscent
	GetTextBound
	GetTextDescent
	GetTextHeight
	GetTextSize
	GetTextWidth
	GetWrappedText
	GetWrappedTextHeight
	GetWrappedTextLineCount
	ImageFillColor
	InsertTableColumns
	InsertTableRows
	LoadState
	MergeTableCells
	ReplaceImage
	SaveState
	SelectImage
	SelectPage
	SelectedImage
	SelectedPage
	SetCapturedPageOptional
	SetCapturedPageTransparencyGroup
	SetImageAsMask
	SetImageMask
	SetImageMaskCMYK
	SetImageMaskFromImage
	SetOverprint
	SetPageContentFromString
	SetPageContentFromVariant
	SetPageDimensions
	SetPageSize
	SetPageTransparencyGroup
	SetTableBorderColor
	SetTableBorderColorCMYK
	SetTableBorderWidth
	SetTableCellAlignment
	SetTableCellBackgroundColor
	SetTableCellBackgroundColorCMYK
	SetTableCellBorderColor
	SetTableCellBorderColorCMYK
	SetTableCellBorderWidth
	SetTableCellContent
	SetTableCellPadding
	SetTableCellTextColor
	SetTableCellTextColorCMYK
	SetTableCellTextSize
	SetTableColumnWidth
	SetTableRowHeight
	SetTableThinBorders
	SetTableThinBordersCMYK
	SetTransparency
	UpdateAndFlattenFormField

	Page manipulation
	AddPageMatrix
	BalanceContentStream
	CapturePage
	CapturePageEx
	ClonePages
	CopyPageRanges
	CopyPageRangesEx
	DACapturePage
	DACapturePageEx
	DAExtractPageText
	DAHidePage
	DAMovePage
	DANewPage
	DANewPages
	DANormalizePage
	DeletePages
	DrawBox
	DrawRotatedBox
	DrawRotatedCapturedPage
	ExtractFilePageContentToString
	ExtractFilePageContentToVariant
	ExtractFilePages
	ExtractFilePagesEx
	ExtractPageRanges
	ExtractPages
	GetContentStreamToString
	GetContentStreamToVariant
	GetPageContentToString
	GetPageContentToVariant
	GetPageText
	HidePage
	InsertPages
	MovePage
	NewPage
	NewPageFromCanvasDC
	NewPages
	NormalizePage
	ReplaceTag
	RotatePage
	SelectPage
	SelectedPage
	SetContentStreamFromString
	SetContentStreamFromVariant
	SetPageContentFromString
	SetPageContentFromVariant
	SetPageThumbnail
	SplitPageText

	Page properties
	AddLGIDictToPage
	AddLinkToDestination
	AddLinkToPage
	AddPageLabels
	BalancePageTree
	ClearPageLabels
	CompressPage
	DAGetPageBox
	DAGetPageContentToString
	DAGetPageContentToVariant
	DAGetPageHeight
	DAGetPageImageList
	DAGetPageWidth
	DAHasPageBox
	DAPageRotation
	DAReleaseImageList
	DARotatePage
	DASetPageBox
	DASetPageSize
	DeletePageLGIDict
	ExtractFilePageText
	ExtractFilePageTextBlocks
	GetContentStreamToString
	GetContentStreamToVariant
	GetPageBox
	GetPageColorSpaces
	GetPageContentToString
	GetPageContentToVariant
	GetPageImageList
	GetPageJavaScript
	GetPageLGIDictContent
	GetPageLGIDictCount
	GetPageLabel
	GetPageMetricsToString
	GetPageUserUnit
	GetPageViewPortCount
	GetPageViewPortID
	GetViewPortBBox
	GetViewPortMeasureDict
	GetViewPortName
	GetViewPortPtDataDict
	HasPageBox
	HidePage
	PageHasFontResources
	PageHeight
	PageJavaScriptAction
	PageRotation
	PageWidth
	ReleaseImageList
	RemovePageBox
	RotatePage
	SetContentStreamFromString
	SetContentStreamFromVariant
	SetCropBox
	SetFindImagesMode
	SetPageActionMenu
	SetPageBox
	SetPageContentFromString
	SetPageContentFromVariant
	SetPageDimensions
	SetPageSize
	SetPageUserUnit

	Path definition and drawing
	AddArcToPath
	AddBoxToPath
	AddCurveToPath
	AddLineToPath
	ClosePath
	DrawPath
	DrawPathEvenOdd
	MovePath
	SetClippingPath
	SetClippingPathEvenOdd
	SetFillShader
	SetLineShader
	SetTextShader
	StartPath

	Rendering and printing
	DARenderPageToDC
	DARenderPageToFile
	DARenderPageToStream
	DARenderPageToString
	DARenderPageToVariant
	GetDefaultPrinterName
	GetLatestPrinterNames
	GetPrintPreviewBitmapToString
	GetPrintPreviewBitmapToVariant
	GetPrinterBins
	GetPrinterDevModeToString
	GetPrinterDevModeToVariant
	GetPrinterMediaTypes
	GetPrinterNames
	GetRenderScale
	LastRenderError
	NewCustomPrinter
	NewInternalPrinterObject
	PrintDocument
	PrintDocumentToFile
	PrintDocumentToPrinterObject
	PrintMode
	PrintOptions
	PrintPages
	PrintPagesToFile
	PrintPagesToPrinterObject
	RenderAsMultipageTIFFToFile
	RenderDocumentToFile
	RenderPageToDC
	RenderPageToDCClip
	RenderPageToFile
	RenderPageToStream
	RenderPageToString
	RenderPageToVariant
	RequestPrinterStatus
	SelectRenderer
	SetGDIPlusFileName
	SetGDIPlusOptions
	SetJPEGQuality
	SetPrinterDevModeFromString
	SetPrinterDevModeFromVariant
	SetRenderCropType
	SetRenderDCErasePage
	SetRenderDCOffset
	SetRenderOptions
	SetRenderScale
	SetupCustomPrinter

	Security and Signatures
	CheckPassword
	Decrypt
	DecryptFile
	EncodePermissions
	Encrypt
	EncryptFile
	EncryptWithFingerprint
	EncryptionAlgorithm
	EncryptionStatus
	EncryptionStrength
	EndSignProcessToFile
	EndSignProcessToStream
	EndSignProcessToString
	GetEncryptionFingerprint
	GetSignProcessByteRange
	GetSignProcessResult
	NewSignProcessFromFile
	NewSignProcessFromStream
	NewSignProcessFromString
	ReleaseSignProcess
	SecurityInfo
	SetFormFieldSignatureImage
	SetSignProcessCustomSubFilter
	SetSignProcessField
	SetSignProcessFieldBounds
	SetSignProcessFieldImageFromFile
	SetSignProcessFieldPage
	SetSignProcessInfo
	SetSignProcessKeyset
	SetSignProcessPFXFromFile
	SetSignProcessPassthrough
	SetSignProcessSubFilter
	SignFile

	Text
	AddCJKFont
	AddFreeTextAnnotation
	AddOpenTypeFontFromFile
	AddStandardFont
	AddSubsettedFont
	AddTrueTypeFont
	AddTrueTypeFontFromFile
	AddTrueTypeSubsettedFont
	AddType1Font
	AppendSpace
	AppendText
	ApplyStyle
	CharWidth
	ClearTextFormatting
	DAExtractPageTextBlocks
	DAGetTextBlockAsString
	DAGetTextBlockBound
	DAGetTextBlockCharWidth
	DAGetTextBlockColor
	DAGetTextBlockColorType
	DAGetTextBlockCount
	DAGetTextBlockFontName
	DAGetTextBlockFontSize
	DAGetTextBlockText
	DANormalizePage
	DASetTextExtractionArea
	DASetTextExtractionOptions
	DASetTextExtractionScaling
	DASetTextExtractionWordGap
	DrawHTMLText
	DrawHTMLTextBox
	DrawHTMLTextBoxMatrix
	DrawMultiLineText
	DrawRotatedMultiLineText
	DrawRotatedText
	DrawRotatedTextBox
	DrawRotatedTextBoxEx
	DrawSpacedText
	DrawText
	DrawTextArc
	DrawTextBox
	DrawTextBoxMatrix
	DrawWrappedText
	EncodeStringFromVariant
	ExtractFilePageTextBlocks
	ExtractPageTextBlocks
	FitRotatedTextBox
	FitTextBox
	FontHasKerning
	FontSize
	GetFontID
	GetHTMLTextHeight
	GetHTMLTextLineCount
	GetHTMLTextWidth
	GetKerning
	GetTextAscent
	GetTextBlockAsString
	GetTextBlockBound
	GetTextBlockCharWidth
	GetTextBlockColor
	GetTextBlockColorType
	GetTextBlockCount
	GetTextBlockFontName
	GetTextBlockFontSize
	GetTextBlockText
	GetTextBound
	GetTextDescent
	GetTextHeight
	GetTextSize
	GetTextWidth
	GetUnicodeCharactersFromEncoding
	GetWrappedText
	GetWrappedTextBreakString
	GetWrappedTextHeight
	GetWrappedTextLineCount
	NormalizePage
	ReleaseTextBlocks
	RemoveStyle
	SaveStyle
	SelectFont
	SelectedFont
	SetBlendMode
	SetBreakString
	SetCharWidth
	SetFormFieldTextSize
	SetHTMLBoldFont
	SetHTMLBoldItalicFont
	SetHTMLItalicFont
	SetHTMLNormalFont
	SetKerning
	SetPageTransparencyGroup
	SetTextAlign
	SetTextCharSpacing
	SetTextColor
	SetTextColorCMYK
	SetTextColorSep
	SetTextExtractionArea
	SetTextExtractionOptions
	SetTextExtractionScaling
	SetTextExtractionWordGap
	SetTextHighlight
	SetTextHighlightColor
	SetTextHighlightColorCMYK
	SetTextHighlightColorSep
	SetTextMode
	SetTextRise
	SetTextScaling
	SetTextSize
	SetTextSpacing
	SetTextUnderline
	SetTextUnderlineColor
	SetTextUnderlineColorCMYK
	SetTextUnderlineColorSep
	SetTextUnderlineCustomDash
	SetTextUnderlineDash
	SetTextUnderlineDistance
	SetTextUnderlineWidth
	SetTextWordSpacing
	SetTransparency
	UpdateTrueTypeSubsettedFont
	UseKerning

	Vector graphics
	AddArcToPath
	AddBoxToPath
	AddCurveToPath
	AddLineToPath
	AddSVGAnnotationFromFile
	AddSWFAnnotationFromFile
	AddSeparationColor
	AddU3DAnnotationFromFile
	ClosePath
	DrawArc
	DrawBarcode
	DrawBox
	DrawCircle
	DrawDataMatrixSymbol
	DrawEllipse
	DrawEllipticArc
	DrawIntelligentMailBarcode
	DrawLine
	DrawPDF417Symbol
	DrawPDF417SymbolEx
	DrawPath
	DrawPathEvenOdd
	DrawQRCode
	DrawRotatedBox
	DrawRoundedBox
	DrawRoundedRotatedBox
	GetBarcodeWidth
	GetCanvasDC
	GetCanvasDCEx
	ImportEMFFromFile
	ImportEMFFromStream
	LoadFromCanvasDC
	LoadState
	MovePath
	NewPageFromCanvasDC
	NewRGBAxialShader
	NewTilingPatternFromCapturedPage
	NoEmbedFontListAdd
	NoEmbedFontListCount
	NoEmbedFontListGet
	NoEmbedFontListRemoveAll
	NoEmbedFontListRemoveIndex
	NoEmbedFontListRemoveName
	SaveState
	SetBlendMode
	SetClippingPath
	SetClippingPathEvenOdd
	SetCustomLineDash
	SetFillColor
	SetFillColorCMYK
	SetFillColorSep
	SetFillShader
	SetFillTilingPattern
	SetLineCap
	SetLineColor
	SetLineColorCMYK
	SetLineColorSep
	SetLineDash
	SetLineDashEx
	SetLineJoin
	SetLineShader
	SetLineWidth
	SetOverprint
	SetPageTransparencyGroup
	SetTextShader
	SetTransparency
	StartPath

	Lite Edition Functions
	AddImageFromFile
	AddLinkToWeb
	AddStandardFont
	DocumentCount
	DrawQRCode
	DrawImage
	DrawText
	DrawTextBox
	FindImages
	GetInformation
	GetPageBox
	HasFontResources
	ImageCount
	ImageHeight
	ImageWidth
	IsLinearized
	LastErrorCode
	LoadFromFile
	MergeDocument
	NewDocument
	NewPage
	NormalizePage
	PageCount
	PageHeight
	PageRotation
	PageWidth
	RemoveDocument
	RotatePage
	SaveToFile
	SecurityInfo
	SelectDocument
	SelectedDocument
	SelectFont
	SelectImage
	SelectPage
	SetBaseURL
	SetInformation
	SetMeasurementUnits
	SetOrigin
	SetPageBox
	SetPageDimensions
	SetPageLayout
	SetPageMode
	SetPageSize
	SetTextAlign
	SetTextColor
	SetTextSize
	SetTextUnderline

